scholarly journals Effect of Rod Diameter and Adhesive Thickness to the Pull-out Strength of Threaded Steel Rod Glued in Laminated Bamboo

2021 ◽  
Vol 832 (1) ◽  
pp. 012024
Author(s):  
M D K Dewi ◽  
Karyadi ◽  
P B Susanto ◽  
Nindyawati
2009 ◽  
Vol 34 (5) ◽  
pp. 643-650 ◽  
Author(s):  
H. OMAE ◽  
C. ZHAO ◽  
Y.-L. SUN ◽  
M. E. ZOBITZ ◽  
S. L. MORAN ◽  
...  

The purpose of this study was to assess tendon metabolism and suture pull-out strength after simple tendon suture in a tissue culture model. One hundred and twelve flexor digitorum profundus tendons from 28 dogs were cultured for 7, 14, or 21 days with or without a static tensile load. In both groups increased levels of matrix metalloproteinase (MMP) mRNA was noted. Suture pull-out strength did not decrease during tissue culture. While the presence of a static load had no effect on the pull-out strength, it did affect MMP mRNA expression. This tissue culture model could be useful in studying the effect of factors on the tendon-suture interface.


2018 ◽  
Vol 30 (1) ◽  
pp. 67-74
Author(s):  
Mohamad WNN ◽  
Suliman NH ◽  
Kamarudin MK ◽  
Mohd-Amin N ◽  
Hassan R
Keyword(s):  
Pull Out ◽  

2021 ◽  
Vol 267 ◽  
pp. 121707
Author(s):  
Francesca Ceroni ◽  
Hossein Darban ◽  
Nicola Caterino ◽  
Raimondo Luciano
Keyword(s):  
Pull Out ◽  

1997 ◽  
Vol 32 (4) ◽  
pp. 1033
Author(s):  
Byung Il Lee ◽  
Jae Eung Yoo ◽  
Kyung Dae Min ◽  
Sung Ho Lee ◽  
In Sup Kim ◽  
...  

2012 ◽  
Vol 83 (4) ◽  
pp. 667-673 ◽  
Author(s):  
Jihye Lee ◽  
Ji Young Kim ◽  
Yoon Jeong Choi ◽  
Kyung-Ho Kim ◽  
Chooryung J. Chung

ABSTRACT Objectives: To evaluate the influence of placement angle and direction of orthopedic force application on the stability of miniscrews. Materials and Methods: Finite element analysis was performed using miniscrews inserted into supporting bone at angles of 90°, 60°, and 30° (P90°, P60°, and P30°). An orthopedic heavy force of 800 gf was applied to the heads of the miniscrews in four upward (U0°, U30°, U60°, U90°) or lateral (L0°, L30°, L60°, L90°) directions. In addition, pull-out strength of the miniscrews was measured with various force directions and cortical bone thicknesses. Results: Miniscrews with a placement angle of 30° (P30°) and 60° (P60°) showed a significant increase in maximum von Mises stress following the increase in lateral force vectors (U30°, U60°, U90°) compared to those with a placement angle of 90° (P90°). In accordance, the pull-out strength was higher with the axial upward force when compared to the upward force with lateral vectors. Maximum von Mises stress and displacement of the miniscrew increased as the angle of lateral force increased (L30°, L60°, L90°). However, a more dramatic increase in maximum von Mises stress was noted in P30° than in P60° and P90°. Conclusion: Placement of the miniscrew perpendicular to the cortical bone is advantageous in terms of biomechanical stability. Placement angles of less than 60° can reduce the stability of miniscrews when orthopedic forces are applied in various directions.


Sign in / Sign up

Export Citation Format

Share Document