scholarly journals Microseismic source location using a 3D velocity model: From the ray tracing method to waveform inversion

2021 ◽  
Vol 861 (4) ◽  
pp. 042025
Author(s):  
Xueyi Shang ◽  
Runxue Miao ◽  
Yi Wang
2020 ◽  
Vol 10 (19) ◽  
pp. 6763
Author(s):  
Pingan Peng ◽  
Yuanjian Jiang ◽  
Liguan Wang ◽  
Zhengxiang He ◽  
Siyu Tu

The accurate localization of mining-induced seismicity is crucial to underground mines. However, the constant velocity model is used by traditional location methods without considering the great difference in wave velocity between rock mass and underground voids. In this paper, to improve the microseismicity location accuracy in mines, we present a fast ray-tracing method to calculate the ray path and travel time from source to receiver considering underground voids. First, we divide the microseismic monitoring area into two categories of mediums—voids and non-voids—using a flexible triangular patch to model the surface model of voids, which can accurately describe any complicated three-dimensional (3D) shape. Second, the nodes are divided into two categories. The first category of the nodes is the vertex of the model, and the second category of the nodes is arranged at a certain step length on each edge of the 3D surface model to improve the accuracy of ray tracing. Finally, the set of adjacent nodes of each node is calculated, and then we obtain the shortest travel time from the source to the receiver based on the Dijkstra algorithm. The performance of the proposed method is tested by numerical simulation. Results show that the proposed method is faster and more accurate than the traditional ray-tracing methods. Besides, the proposed ray-tracing method is applied to the microseismic source localization in the Huangtupo Copper and Zinc Mine. The location accuracy is significantly improved compared with the traditional method using the constant velocity model and the FMM-based location method.


2020 ◽  
Vol 10 (20) ◽  
pp. 7205
Author(s):  
Yi Wang ◽  
Xueyi Shang ◽  
Zewei Wang ◽  
Rui Gao

High-accuracy determination of a microseismic (MS) location is the core task in MS monitoring. In this study, a 3D multi-scale grid Green’s function database, depending on recording wavefield frequency band for the target mining area, is pre-generated based on the reciprocity theorem and 3D spectral element method (SEM). Then, a multi-scale global grid search strategy is performed based on this pre-stored Green’s function database, which can be effectively and hierarchically processed by searching for the spatial location. Numerical wavefield modeling by SEM effectively overcomes difficulties in traditional and simplified ray tracing modeling, such as difficult wavefield amplitude and multi-path modeling in 3D focusing and defusing velocity regions. In addition, as a key step for broadband waveform simulation, the source-time function estimated from a new data-driven singular value decomposition averaged fractional derivative based wavelet function (DD-SVD-FD wavelet) was proposed to generate high-precision synthetic waveforms for better fitting observed broadband waveform than those by simple and traditional source-time function. Combining these sophisticated processing procedures, a new robust grid search and waveform inversion-based location (GSWI location) approach is integrated. In the synthetic test, we discuss and demonstrate the importance of 3D velocity model accuracy to waveform inversion-based location results for a practical MS monitoring configuration. Furthermore, the average location error of the 3D GSWI location for eight real blasting events is only 15.0 m, which is smaller than error from 3D ray tracing-based location (26.2 m) under the same velocity model. These synthetic and field application investigations prove the crucial role of 3D velocity model, finite-frequency travel-time sensitivity kernel characteristics and accurate numerical 3D broadband wavefield modeling for successful MS location in a strong heterogeneous velocity model that are induced by the presence of ore body, host rocks, complex tunnels, and large excavations.


2000 ◽  
Vol 54 (3) ◽  
pp. 46-56
Author(s):  
K. Uchida ◽  
D. Da ◽  
C. K. Lee ◽  
T. Matsunaga ◽  
T. Imai ◽  
...  

Energy ◽  
2021 ◽  
Vol 228 ◽  
pp. 120438
Author(s):  
Asher J. Hancock ◽  
Laura B. Fulton ◽  
Justin Ying ◽  
Corey E. Clifford ◽  
Shervin Sammak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document