radio wave propagation
Recently Published Documents


TOTAL DOCUMENTS

699
(FIVE YEARS 101)

H-INDEX

27
(FIVE YEARS 4)

Author(s):  
Mohd Nazeri Kamaruddin ◽  
Tan Kim Geok ◽  
Omar Abdul Aziz ◽  
Tharek Abd Rahman ◽  
Ferdous Hossain ◽  
...  

This paper explained an adaptive ray tracing technique in modelling indoor radio wave propagation. As compared with conventional ray tracing approach, the presented ray tracing approach offers an optimized method to trace the travelling radio signal by introducing flexibility and adaptive features in ray launching algorithm in modelling the radio wave for indoor scenarios. The simulation result was compared with measurements data for verification. By analyzing the results, the proposed adaptive technique showed a better improvement in simulation time, power level and coverage in modelling the radio wave propagation for indoor scenario and may benefit in the development of signal propagation simulators for future technologies.


Author(s):  
T.G. Cameron ◽  
R.A.D. Fiori ◽  
D.R. Themens ◽  
E.M. Warrington ◽  
T. Thayaparan ◽  
...  

Doklady BGUIR ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 42-50
Author(s):  
V. I. Mordachev

The goal of the work is to substantiate the technique for assessing the intensity of electromagnetic background generated by the set of radiating user devices of mobile communications in multi-storey buildings. For known empirical models of radio wave propagation in buildings, expressions are obtained for the probability distribution density and expectation of the power flux density of electromagnetic fields generated inside building by these sources from various parts of the building's interior space: from the near zone with radio wave propagation conditions similar to free space; and from the far zone, for which, along with intense attenuation of radio waves due to internal obstacles, a «quasi-waveguide» propagation of radio waves along corridors and industrial premises is also possible in certain directions. Relationships are obtained for the average levels of individual components of the electromagnetic background, determined as scalar sums of power flux density values of the fields generated by the sets of radiating devices of both the near zone and the far zone as a whole or its individual parts, characterized by different conditions of radio wave propagation. A method is proposed for assessing the electromagnetic background inside buildings based on approximation of sections of the inner surface of the premises in which the observation point is located, and the outer surface of the building, in the inner space of which radiation sources are randomly distributed, by the corresponding sections of the inner and outer spherical surfaces that are the subtend areas of the corresponding solid angles, in space elements of which a different spatial densities and radiation powers of sources and different conditions of radio wave propagation are possible. The results can be used to analyze the electromagnetic ecology of habitat and the electromagnetic safety of population at the full-scale implementation of 4G/5G/6G mobile communications, as well as to analyze the electromagnetic compatibility of systems using frequency bands for mobile communications on a primary and secondary basis.


2021 ◽  
Vol 25 (Special) ◽  
pp. 1-7-1-12
Author(s):  
Baseem G. Nsaif ◽  
◽  
Adheed H. Sallomi ◽  

An accurate propagation modeling of radio waves propagation is very important task in cellular network design as it provides the detailed useful knowledge about the wireless channel environment characteristics. Theoretical or empirical RF propagation models provide the required useful information about the signal path loss and fading to evaluate the received signal level, the coverage area, and the outage probability in specific regions. This paper aimed to develop an empirical radio wave propagation model based on observations and sets of measurement data collected from different sites through drive test. These measurements are used to determine the received signal power at some locations to create an empirical radio wave propagation model that is suitable to be appropriate in cellular network accurate design and link budget prediction at the city of Baghdad.


Author(s):  
V. N. Isakov ◽  
V. S. Lankina

The article is devoted to the issues of numerical calculation of the characteristics of the electromagnetic field of radiating apertures. Тhe radiating aperture is a universal electrodynamic model used in the analysis of a special class of antennas, in particular, mirror and horn antennas, in the study of diffraction phenomena, in the planning of radio wave propagation paths, and when solving problems of wireless transmission of electric energy at a distance. The structure of the electromagnetic field of a radiating aperture in the intermediate and far zones is of the greatest interest according to the needs of practice. However, the theoretical solutions of these problems are usually difficult to obtain, except for some special cases related to the far zone. This leads to the development of appropriate computational models. This paper is aimed at generalization and systematization of experience in developing software for the simulation of electromagnetic field characteristics of radiating apertures in the intermediate and far zones. This paper considers an approach to developing a computational model of a radiating aperture that may be used to calculate the characteristics of electromagnetic field in the intermediate and far zones. Examples of results obtained for circular and ring apertures describing the structure of their electromagnetic field are given. Examples of flight diagrams of a circular aperture are given. The effect of “searchlight” localization of the electromagnetic field in the intermediate zone of a circular emitting aperture is demonstrated. The effect of mutual compensation of neighbouring Fresnel zones using the circular emitting aperture model is demonstrated. A program was developed for calculating the characteristics of the electromagnetic field of radiating holes in the intermediate and far zones. The results can also be used as illustration material for teaching the academic disciplines “Electrodynamics and radio wave propagation” and “Microwave devices and antennas”.


Sign in / Sign up

Export Citation Format

Share Document