scholarly journals Integrated Engineering, Environmental, and Economical Modelling of Micro Hydro Plant (MHP) Production

2021 ◽  
Vol 945 (1) ◽  
pp. 012033
Author(s):  
Al Dianty Marelianda ◽  
Reza Fathurahman ◽  
Frederik Joseph Putuhena ◽  
Rizka Arbaningrum ◽  
Zuchra Helwani

Abstract The use of renewable energy has commonly concentrated on energy production through wind engines and solar panels. Nowadays, the micro-hydropower (MHP) plant has a great challenge as an important contributor to energy systems. Indonesia has the potential natural resources to develop that power plant, in the form of the river where is abundant throughout all provinces. The research aims to address solving issues regarding deficit energy by renewable energy production. The environmental and hydrological approaches were used to determine the location to obtain the optimal and proper utilization of MHP. The analysing from all modelling creates an economical assessment of MHP energy production. The result recommends MHP with the capacity of 2 x 4.0 MW and a total discharge of 14.30 m3/second whereas design flood discharge is 813.47 m3/second (Q100 year). The implementation of MHP is an effort to achieve independent energy in the region.

2021 ◽  
Vol 1 ◽  
Author(s):  
Majid Monemzadeh ◽  
Mahnaz Talebi-Dastenaei2

University of Kashan was founded in 1974 and is the oldest institution of higher education in Kashan. Kashan (33° 58' 59" N / 51° 25' 56" E) climate is classified as a hot and dry by the Köppen-Geiger system. This climate causes a large amount of energy consumption for University at springs and summers. On the other hand, it means that sun is shining strongly for more than 6 months and University of Kashan has been working on some solutions to use solar energy and decrease dependency on the old fossil-fuel energy system. The current paper studies some of the main activities of University of Kashan on Energy Saving and Renewable Energy Production programs such as CCHP plant (The first Combined Cool, Heat, and Power plant in Iran), using solar panels and energy-efficient appliances.


2021 ◽  
Author(s):  
Greg A Barron-Gafford ◽  
Mitchell Pavao-Zuckerman ◽  
Kai Lepley ◽  
Andrea Gerlak

<p>We have significant vulnerabilities across our food, water, and energy systems – any of which could undermine societal resilience in light of growing populations and climatic change. Rising average temperatures, extremes in precipitation, and more severe storms present increasing agricultural production risks – particularly across dryland regions. Land managers across the southwestern United States are already feeling the pressures of a changing climate. Between 11–21% of the total irrigated acreage experienced yield declines over the past 40 years due to irrigation interruptions — despite increased water usage. Food producers are experiencing increased uncertainties around production security from severe weather, interest rates to invest in climate adaptations, income support payments or incentives, and climate-related risks to pollinator abundance that affect crop yields and labor conditions and availability. Combined with trends towards increases in retirements from farming, these risks are leading to more land moving out of food production — often shifting to energy production. A growing demand for photovoltaic (PV) solar energy from ground-mounted systems, projected to require ~8,000 km2 by 2030, is resulting in an increase of land-use conflicts for these two primary needs — food and energy. Is it possible to improve both food and renewable energy production security sustainably? An ‘either-or’ discourse between food and PV solar energy production unnecessarily compounds issues related to allocating space, water, and capital for development of sustainable strategies.</p><p>We believe that a hybrid agricultural-PV solar ‘agrivoltaics’ can increase resilience in food and renewable energy production, water and soil conservation, and rural prosperity and economic development—critical sustainability metrics. However, successful adoption of this technology requires research from a socio-environmental systems perspective to optimize bio-technical trade-offs at the field scale, while also rigorously assessing the sociopolitical barriers and how to overcome them at both individual and societal levels. Our research design is centered on stakeholder engagement approaches with impactful, associated outreach activities to communicate and enhance the reach of potential benefits of agrivoltaics. An emerging trend in sustainability research has been to recognize that resource challenges need to be addressed as integrated and interconnected sets of issues, where outcomes result from interacting social (S), ecological (E), and technological (T) subsystems (SETS). Often, sustainability transitions are seen more as a governance challenge than an infrastructure or technological challenge. That is, while technological solutions such as agrivoltaics can be developed, the adoption and spread of innovations takes place through a myriad of social, political, and economic processes. This is further complicated across food and energy systems, where multiple stakeholders present different backgrounds, cultures, demographics, and decision making processes. We describe an evaluation of agrivoltaic systems from a holistic SETS perspective in order to develop implementation pathways for widespread adoption of agrivoltaics across the US.</p>


Sign in / Sign up

Export Citation Format

Share Document