scholarly journals Fault current limiter with solid-state circuit breakers

Author(s):  
H Bălan ◽  
L Neamț ◽  
M I Buzdugan ◽  
T Varodi ◽  
E Pop
2019 ◽  
Vol 34 (10) ◽  
pp. 9600-9608 ◽  
Author(s):  
David Marroqui ◽  
Jose Manuel Blanes ◽  
Ausias Garrigos ◽  
Roberto Gutierrez

AIMS Energy ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 991-1008
Author(s):  
Mohammad Aman YAQOBI ◽  
◽  
Hidehito Matayoshi ◽  
Natarajan Prabaharan ◽  
Hiroshi Takahashi ◽  
...  

<abstract><p>DC system has the potential of vast and rapid fault current generation due to multiple (line and converters) discharge capacitors and small impedance of DC lines. DC fault current spreads through the system exponentially compared to AC. Such an unexpected huge current causes a voltage drop, impacts the normal operation of system components and exposes the system to a great challenge for fault detection and interruption. For prevention of system destruction during the fault, multiple approaches such as application of Mechanical Circuit Breakers (MCBs), fuses, Solid State Circuit Breaker (SSCB), and Hybrid Solid-State Circuit Breaker (HSSCB) have been proposed and applied. In DC fault applications, fast fault detection and interruption without any interference to the other components are quite important. Therefore, semiconductor breakers have been implemented to meet the DC fault protection requirements with a high-speed operation where traditional MBs have failed. Due to the high conduction loss and low efficiency of semiconductor switches, for fast and efficient DC fault interruption, different Fault Current Limiter (FCL) types are suggested. Although a high impedance FCL can prevent the voltage fluctuations due to the current decline, it can cause operation speed issues, coordination troubles, overheat, and malfunction of protective components in a fault situation.</p> <p>This paper focused on a combination of two-way HSSCB with a self-adapt DC short current limiter, ultra-fast switch, and power electronic switch to overcome the above challenges. It can efficiently and fast fault current limiting response with low conducting loss and appropriate cooperation among protective components in a low voltage DC system. The MATLAB/Simulink is used to analyze the effectiveness and consistency of the proposed FCL-HSSCB in 400 <italic>V</italic> interconnected standalone DC microgrids.</p></abstract>


Author(s):  
Ronald Warzoha ◽  
Patrick Kirby ◽  
Amy Fleischer ◽  
Mahesh Gandhi ◽  
Ashok Sundaram

This paper presents the results of thermal modeling of a unique 69 kV 3000A Solid State Fault Current Limiter (SSFCL) developed by Silicon Power of Malvern, PA with support of EPRI. The development of the Solid State Fault Current Limiter is expected to modernize power distribution systems through the use of small-scale solid-state power devices. The use of this new design is expected to increase reliability and functionality while reducing footprint. However, as the footprint is reduced, the heat flux for the system is increased, leading to the significant possibility of device failure due to thermal excursions if the heat load is not properly managed. The high heat loading requires the use of aggressive thermal management in the form of liquid cooling of the electronics. This system features 288 kW of waste heat in the three phase system. The system is submerged in FR3 dielectric coolant and the desired thermal management system is liquid natural convection within the tank and shed to the ambient through an external finned array system. This project explores the feasibility of this system design.


Sign in / Sign up

Export Citation Format

Share Document