Volume 10: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B, and C
Latest Publications


TOTAL DOCUMENTS

241
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By ASMEDC

9780791848715

Author(s):  
M. R. Myers ◽  
D. G. Walker ◽  
D. E. Yuhas ◽  
M. J. Mutton

Ultrasonic time of flight measurements have been used to estimate the interior temperature of propulsion systems remotely. All that is needed is acoustic access to the boundary in question and a suitable model for the heat transfer along the path of the pulse train. The interior temperature is then deduced from a change in the time of flight and the temperature dependent velocity factor, which is obtained for various materials as a calibration step. Because the acoustic pulse samples the entire temperature distribution, inverse data reduction routines have been shown to provide stable and accurate estimates of the unknown temperature boundary. However, this technique is even more interesting when applied to unknown heat flux boundaries. Normally, the estimation of heat fluxes is even more susceptible to uncertainty in the measurement compared to temperature estimates. However, ultrasonic sensors can be treated as extremely high-speed calorimeters where the heat flux is directly proportional to the measured signal. Through some simple one-dimensional analyses, this work will show that heat flux is a more natural and stable quantity to estimate from ultrasonic time of flight. We have also introduced an approach for data reduction that makes use of a composite velocity factor, which is easier to measure.


Author(s):  
P. Olley ◽  
T. Gough ◽  
P. D. Coates

The Molecular Strain Function model with Convective Constraint Release has been demonstrated by Wagner to fit elongational and shear viscosities, and First and Second Normal stress differences for a variety of polymer melts, when used with a Convective Constraint Release mechanism [J. Rheol. 45 (2001), 1387]. A modification to the CCR mechanism was shown to give more accurate representation of corner vortices in an abrupt contraction flow [JNNFM 135 (2006), 68] for both planar and axisymmetric contraction flows. It is highly desirable to assess the model against 3D flows. A primary advantage of 3D simulation in assessing a constitutive model is that, experimentally, it is very difficult to produce truly 2D data; the side walls of a finite die affect stress birefringence measurements (since this is a ‘line of sight’ cumulative measurement), and also induce significant 3D motion into the flow. The existing 2-dimensional code has been extended to fully 3-dimensional flows using 27-node ‘brick’ elements, and using a number of developments to deal with tracking and storage problems inherent in 3D time-integral solution. The 3D code is assessed against known 2-dimensional solutions to verify its accuracy; the constitutive model is then assessed against experimental data for a 4:1 contraction ratio die, which has finite width (5:3 depth to inlet height), inducing 3D effects. Stress birefringence, vortex size, and cross-sectional flow rate data at a number of flow rates are compared. The model is shown to give good accuracy against this flow.


Author(s):  
Khodayar Javadi ◽  
Aliyar Javadi

A well performance film cooling implies for a high cooling effectives accompanied with a wide cooling coverage. During the past six decades, film cooling effectiveness has been well defined with a specific relation to quantify it. However, despite of numerous film cooling research, there is not an explicit method to quantify the uniformity of a coolant film spread over the hot surfaces. This work introduces a cooling uniformity coefficient (CUC) to evaluate how well a coolant film spreads over a surface being cooled. Four different cases are computationally studied. In the three cases, a single jet is injected into a hot cross flow with different jet exit shapes (i.e. square, spanwise rectangular, and streamwise rectangular). The fourth case is a novel combined triple jet (CTJ) introduced in our previous work. The cross sections of all the systems are equal to maintain the same coolant mass flow rate injection into the hot cross flow. The CUC’s of the different cases are compared with each other at two blowing ratios of 0.5 and 1.5. It is proposed that in addition to the film cooling effectiveness, the CUC is a necessary parameter to evaluate how well a coolant film is spread over a hot surface.


Author(s):  
Carolina P. Naveira ◽  
Olivier Fudym ◽  
Renato M. Cotta ◽  
Helcio R. B. Orlande

The Generalized Integral Transform Technique is employed in the hybrid numerical-analytical solution of heat diffusion problems in heterogeneous media. The GITT is utilized to handle the associated eigenvalue problem with aribitrarily space variable coefficients, defining an eigenfunction expansion in terms of a Sturm-Liouville problem of known solution. The formal solution is first applied in solving an example of space variable thermophysical properties found in heat transfer analysis of functionally graded materials (FGM), validated by the exact solution obtained through classical integral transforms in the specific situation of exponentially varying coefficients. Then, it is challenged in handling a double-layered system with abrupt variation of properties, and critically compared against the exact solution obtained by the classical integral transform method with the adequate discontinuous multi-region eigenvalue problem. The convergence behavior of the proposed expansions is then critically inspected and numerical results are presented to demonstrate the applicability of the general approach.


Author(s):  
Bing Wei ◽  
Dong Zhou

Operating safety is one of the most important things to supercritical once-through boilers. To study the hydrodynamic characteristics of fluid in water walls of supercritical once-through boilers and to find out the instable factors will be of great significance to boiler operation. In this paper the mathematical models for hydrodynamic characteristics of fluid in water walls are established. With an example of 600MW boiler, by using the calculation program, the hydrodynamic characteristics curves without and with the throttles at the inlets of the water walls at different operating conditions are presented, the fluid flow instability and the reasons are analyzed. The calculation results show that the boiler operates stably and safely at 100% MCR (Maximum Continuous Rating) condition, the hydrodynamic instability exists at low heating loads of 30% MCR. The method of installing the throttles at the inlets of the water wall pipes will increase the parabola characteristics, help to improve the fluid instability to a certain stable extent, but due to the small curve slopes at low mass flowrates, still need to pay more attention to the low heating loads operation. The existence of gravity pressure head is good to the stability of the vertical upward flow.


Author(s):  
Dong Fu ◽  
Dui Huang ◽  
Ahmed Juma ◽  
Curtis M. Schreiber ◽  
Xiuling Wang ◽  
...  

Liquid-cooled exhaust manifolds are widely used in turbocharged diesel engines. The large temperature gradient in the overall manifold will cause remarkable thermal stress. The objective of the project is to modify the current design for preventing the high thermal stress and extending the life span of the manifold. To achieve the objective, the combination between Computational Fluid Dynamics (CFD) with Finite Element (FE) is introduced. Firstly, CFD analysis is conducted to obtain temperature distribution, providing boundary conditions of the thermal load on the FE mesh. Afterward, FE analysis is carried out to determine the thermal stress. The interpolation of the temperature data from CFD to FE is done by Binary Space Partitioning (BSP) tree algorithm. To accurately quantify the thermal stress, nonlinear material behavior is considered. The computational results are compared with that of Number of Transfer Units (NTU) method, and are further verified with industrial experiment data. All these comparisons indicate that present investigation reasonably predicts the thermal stress behavior. Based on the results, recommendations are given to optimize the manifold design.


Author(s):  
Aalok Trivedi ◽  
Dereje Agonafer ◽  
Deepak Sivanandan ◽  
Mark Hendrix ◽  
Akbar Sahrapour

Computational Fluid Dynamics (CFD) is widely used in the telecommunication industry to validate experimental data and obtain both qualitative and quantitative results during product development. A typical outdoor telecommunications cabinet requires the modeling of a large number of components in order to perform the required air flow and thermal design. Among these components, the heat exchanger is the most critical to thermal performance. The cabinet heat exchanger and other thermal components make up a complex thermal system. This thermal system must be characterized and optimized in a short time frame to support time-to-market requirements. CFD techniques allow for completing system thermal optimization long before product test data can be available. However, the computational model of the complex thermal system leads to a large mesh count and corresponding lengthy computational times. The objective of this paper is to present an overview of techniques to minimize the computational time for complex designs such as a heat exchanger used in telecommunication cabinets. The discussion herein presents the concepts which lead to developing a compact model of the heat exchanger, reducing the mesh count and thereby the computation time, without compromising the acceptability of the results. The model can be further simplified by identifying the components significantly affecting the physics of the problem and eliminating components that will not adversely affect either the fluid mechanics or heat transfer. This will further reduce the mesh density. Compact modeling, selective meshing, and replacing sub-components with simplified equivalent models all help reduce the overall model size. The model thus developed is compared to a benchmark case without the compact model. Given that the validity of compact models is not generalized, it is expected that this methodology can address this particular class of problems in telecommunications systems. The CFD code FLOTHERM™ by Flomerics is used to carry out the analysis.


Author(s):  
Muhammad Umar ◽  
Charles A. Garris

The crypto-steady rotating jet pressure exchange ejector is a novel concept in turbomachinery where two fluids, at different energy levels, come in direct contact with each other to transfer energy and momentum between them through non-steady interface pressure forces. The current paper seeks to provide an insight into the complex flow phenomena occurring inside the radial flow pressure exchange ejector. The primary mechanisms controlling the process are pressure exchange and mixing. This paper will seek to discriminate between energy transfer by each respective mechanism. The energy and momentum transfer in the near field is shown to be mainly due to the pressure exchange process, as the mixing layer does not develop substantially in this region. As the radius increases, the mixing layer tends to grow and the energy and momentum transfer is governed by the mixing process. As a consequence, the length scales of the pressure exchange zone are small, thus making the pressure exchange ejector more compact in size. The paper will delineate between the two length scales. If this new concept is shown to be viable for gas compression at sufficiently high pressure ratios, then, in refrigeration applications, it would enable environmentally benign refrigerants to replace the harmful chlorofluorocarbons (CFC) and reduce the effluence of greenhouse gases. Applications in many other areas, where conventional ejectors are currently used, are also possible.


Author(s):  
Vedanth Srinivasan ◽  
Kil-min Moon ◽  
David Greif ◽  
DeMing Wang ◽  
Myung-hwan Kim

In this article, we describe a newly developed modeling procedure to simulate the immersion quench cooling process using the commercial code AVL-FIRE. The boiling phase change process, triggered by the dipping hot solid part into a subcooled liquid bath and the ensuing two-phase flow is handled using an Eulerian two-fluid method. Mass transfer effects are modeled based on different boiling modes such as film or nucleate boiling regime prevalent in the system. Separate computational domains constructed for the quenched solid part and the liquid (quenchant) domain are numerically coupled at the interface of the solid-liquid boundaries using the AVL-Code-Coupling-Interface (ACCI) feature. The advanced ACCI procedure allows the information pertaining to the phase change rates in the liquid domain to appear as cooling rates on the quenched solid boundaries. As a consequence, the code handles the multiphase flow dynamics in the liquid domain in conjunction with the temperature evolution in the solid region in a tightly coupled fashion. The methodology, implemented in the commercial code AVL-FIRE, is exercised in simulating the quenching of solid parts. In part I of the present research, phase change models are validated by simulating a work piece quenching process for which measurement data are available for various water temperature ranging from 20C to 80C. The computations provide a detailed description of the vapor and temperature fields in the liquid and solid domain at various time instants. In particular, the modifications arising in the liquid-vapor flow field in the near vicinity of the solid interface as a function of the boiling mode is well accommodated. The temperature history predicted by our model at different monitoring points, under different subcooling conditions, correlate very well with the experimental data wherever available. In part II, the model is further applied to real engine cylinder head quenching process and assessment is made for the cooling curves for various measuring points. Overall, the predictive capability of the new quenching model is well demonstrated.


Author(s):  
D. H. Zhu ◽  
B. Z. Li ◽  
J. G. Yang

This paper studies the heat transfer mechanism in deep grinding process, especially the heat flux to the workpiece. On the basis of triangle moving heat source, a quadratic curve heat flux model in the grinding zone was developed to determine the heat flux distribution and to estimate the surface temperature of workpiece. From the calculated theoretical expression of heat flux to the workpiece, the quadratic curve heat flux can be understood as the superposition of square law heat flux, triangular heat flux and uniform heat flux in the grinding zone. Then four heat flux models using the determined amount of heat flux were applied to estimate the workpiece surface temperatures which were compared with that measured by the embedded thermocouple. It has been found that the quadratic curve heat flux distribution seems to give the best match with measured and theoretical temperature, although square law heat flux model is good enough to predict the temperature.


Sign in / Sign up

Export Citation Format

Share Document