scholarly journals Modeling and analysis of residual stress distribution in butt welded joint with thorough penetration taking into account influence of groove weld

Author(s):  
J Winczek ◽  
M Gucwa ◽  
M Kukuryk ◽  
K Makles ◽  
R Parkitny
2007 ◽  
Vol 345-346 ◽  
pp. 1469-1472
Author(s):  
Gab Chul Jang ◽  
Kyong Ho Chang ◽  
Chin Hyung Lee

During manufacturing the welded joint of steel structures, residual stress is produced and weld metal is used inevitably. And residual stress and weld metal influence on the static and dynamic mechanical behavior of steel structures. Therefore, to predict the mechanical behavior of steel pile with a welded joint during static and dynamic deformation, the research on the influence of the welded joints on the static and dynamic behavior of steel pile is clarified. In this paper, the residual stress distribution in a welded joint of steel piles was investigated by using three-dimensional welding analysis. The static and dynamic mechanical behavior of steel piles with a welded joint is investigated by three-dimensional elastic-plastic finite element analysis using a proposed dynamic hysteresis model. Numerical analyses of the steel pile with a welded joint were compared to that without a welded joint with respect to load carrying capacity and residual stress distribution. The influence of the welded joint on the mechanical behavior of steel piles during static and dynamic deformation was clarified by comparing analytical results


2009 ◽  
Vol 27 (2) ◽  
pp. 240s-244s ◽  
Author(s):  
Akira MAEKAWA ◽  
Michiyasu NODA ◽  
Shigeru TAKAHASHI ◽  
Toru OUMAYA ◽  
Hisashi SERIZAWA ◽  
...  

2000 ◽  
Vol 49 (12Appendix) ◽  
pp. 287-294 ◽  
Author(s):  
Makoto HAYASHI ◽  
Masayuki ISHIWATA ◽  
Yukio MORII ◽  
Nobuaki MINAKAWA ◽  
John H. ROOT

Author(s):  
Masahito Mochizuki ◽  
Masao Toyoda

Residual stress by repair welds in a pipe weld is computed using the thermal elastic-plastic analysis. Weld bond and heat-affected zone of a butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered for reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Keiji Nakacho ◽  
Naoki Ogawa ◽  
Takahiro Ohta ◽  
Michisuke Nayama

The stress that exists in a body under no external force is called the inherent stress. The strain that is the cause (source) of this stress is called the inherent strain. This study proposes a general theory of an inherent-strain-based measurement method for the residual stress distributions in arbitrary three-dimensional bodies and applies the method to measure the welding residual stress distribution of a welded joint in a reactor vessel. The inherent-strain-based method is based on the inherent strain and the finite element method. It uses part of the released strains and solves an inverse problem by a least squares method. Thus, the method gives the most probable value and deviation of the residual stress. First, the basic theory is explained in detail, and then a concrete measurement method for a welded joint in a reactor vessel is developed. In the method, the inherent strains are unknowns. In this study, the inherent strain distribution was expressed with an appropriate function, significantly decreasing the number of unknowns. Five types of inherent strain distribution functions were applied to estimate the residual stress distribution of the joint. The applicability of each function was evaluated. The accuracy and reliability of the analyzed results were assessed in terms of the residuals, the unbiased estimate of the error variance, and the welding mechanics. The most suitable function, which yields the most reliable result, was identified. The most reliable residual stress distributions of the joint are shown, indicating the characteristics of distributions with especially large tensile stress that may produce a crack.


Sign in / Sign up

Export Citation Format

Share Document