scholarly journals Development of Nondestructive Hybrid Measuring Method for Three-dimensional Residual Stress Distribution of Thick Welded Joint

2012 ◽  
Vol 30 (4) ◽  
pp. 354-364
Author(s):  
Keiji NAKACHO ◽  
Norifumi KASAHARA ◽  
Ryota TAMURA
2007 ◽  
Vol 345-346 ◽  
pp. 1469-1472
Author(s):  
Gab Chul Jang ◽  
Kyong Ho Chang ◽  
Chin Hyung Lee

During manufacturing the welded joint of steel structures, residual stress is produced and weld metal is used inevitably. And residual stress and weld metal influence on the static and dynamic mechanical behavior of steel structures. Therefore, to predict the mechanical behavior of steel pile with a welded joint during static and dynamic deformation, the research on the influence of the welded joints on the static and dynamic behavior of steel pile is clarified. In this paper, the residual stress distribution in a welded joint of steel piles was investigated by using three-dimensional welding analysis. The static and dynamic mechanical behavior of steel piles with a welded joint is investigated by three-dimensional elastic-plastic finite element analysis using a proposed dynamic hysteresis model. Numerical analyses of the steel pile with a welded joint were compared to that without a welded joint with respect to load carrying capacity and residual stress distribution. The influence of the welded joint on the mechanical behavior of steel piles during static and dynamic deformation was clarified by comparing analytical results


1989 ◽  
Vol 111 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Yukio Ueda ◽  
Keiji Fukuda

In this paper, a new measuring method of three-dimensional residual stresses induced in a butt welded joint is presented. The proposed method is based on a general approach developed by the authors, in which inherent strains (the source of residual stresses) are dealt with as parameters. In the present report, three-dimensional residual stresses in a long body, in which the residual stress distribution is uniform in longitudinal direction, is considered as a special case. It is shown that the measurement of the three-dimensional residual stress, in this case, can be reduced to a combination of two sets of measurements of two-dimensional residual stresses. This method is applied to determine the residual stresses in an actual welded joint and its reliability and practicability are also demonstrated.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Keiji Nakacho ◽  
Naoki Ogawa ◽  
Takahiro Ohta ◽  
Michisuke Nayama

The stress that exists in a body under no external force is called the inherent stress. The strain that is the cause (source) of this stress is called the inherent strain. This study proposes a general theory of an inherent-strain-based measurement method for the residual stress distributions in arbitrary three-dimensional bodies and applies the method to measure the welding residual stress distribution of a welded joint in a reactor vessel. The inherent-strain-based method is based on the inherent strain and the finite element method. It uses part of the released strains and solves an inverse problem by a least squares method. Thus, the method gives the most probable value and deviation of the residual stress. First, the basic theory is explained in detail, and then a concrete measurement method for a welded joint in a reactor vessel is developed. In the method, the inherent strains are unknowns. In this study, the inherent strain distribution was expressed with an appropriate function, significantly decreasing the number of unknowns. Five types of inherent strain distribution functions were applied to estimate the residual stress distribution of the joint. The applicability of each function was evaluated. The accuracy and reliability of the analyzed results were assessed in terms of the residuals, the unbiased estimate of the error variance, and the welding mechanics. The most suitable function, which yields the most reliable result, was identified. The most reliable residual stress distributions of the joint are shown, indicating the characteristics of distributions with especially large tensile stress that may produce a crack.


1989 ◽  
Vol 33 ◽  
pp. 353-362 ◽  
Author(s):  
Masanori Kurita ◽  
Makoto Sato ◽  
Ikuo Ihara ◽  
Akira Saito

AbstractCeramics are sometimes bonded to ductile metals in order to make up for their brittle behavior for industrial use. The residual stress will be induced in ceramics bonded to metals at high temeprature, and it has a strong influence on the strength of ceramic-metal joints. A silicon nitride plate was bonded to a carbon steel plate by brazing to a copper sheet sandwiched between the two materials. The residual stress distribution of the joint specimen was determined by x-ray diffraction using the Gaussian curve method. The measured residual stress distribution almost agreed with that calculated by the three-dimensional thermoelastoplastic stress analysis using FEM, but differed remarkably from that calculated by the two-dimensional stress analysis. This is because a stress concentration occurs at the ceramic-metal interface and the stress distributes three - dimensionally. The stress σx in the axial direction on the surface of the specimen takes maximum values at the center and the edge of the interface.


Author(s):  
Bai-Qiao Chen ◽  
C. Guedes Soares

This work investigates the temperature distribution, deformation and residual stress in steel plates as a result of different sequences of welding. The single-pass gas tungsten arc welding process is simulated by a three dimensional nonlinear thermo-elasto-plastic approach. It is observed that the distribution of residual stress varies through the direction of plate thickness. It is concluded that the welding sequence affects not only the welding deformation but also the residual stress mainly in the lower layer of the plates. An in-depth discussion on the pattern of residual stress distribution is presented, especially on the width of the tension zone. Smaller residual tension zone and slightly lower compressive stress are found in thicker plate.


Author(s):  
Mithun K. Dey ◽  
Dave Kim ◽  
Hua Tan

Abstract Residual Stress distribution and parametric influence of friction are studied for the split sleeve cold expanded holes in Al 2024 T351 alloy, by developing a three-dimensional finite element model of the process. Fastener holes in the alloy are necessary for the manufacturing process, but they create a potential area for stress concentration, which eventually leads to fatigue under cyclic loading. Beneficial compressive residual stress distribution as a result of the split sleeve cold expansion process provides retardation against crack initiation and propagation at the critical zones near hole edges. In this parametric study, the influence of friction between contact surfaces of the split sleeve and mandrel is numerically investigated. Hole reaming process after split sleeve cold expansion is often not discussed. Without this post-processing procedure, split sleeve cold expansion is incomplete in practice, and its purpose of providing better fatigue performance is invalidated. This study presents results and an overview of the significance of friction with the consideration of the postprocessing of split sleeve cold expansion. The numerical results show that with increasing friction coefficient, compressive residual stress reduces significantly at the mandrel entry side, which makes the hole edge more vulnerable to fatigue. The different aspects of finite element modeling approaches are also discussed to present the accuracy of the prediction. Experimental residual stress observation or visual validation is expensive and time-consuming. So better numerical prediction with the transparency of the analysis design can provide critical information on the process.


2009 ◽  
Vol 417-418 ◽  
pp. 937-940
Author(s):  
Li Li ◽  
Ren Fu Wang ◽  
Gang Xue ◽  
Xiang Jun Min

The pipe-plate welding is a common type of joint in almost all industries. However the presence of residual stresses can be detrimental to the performance of the welded product. Therefore a good method for accurate estimation of the welding residual stress is needed. In this paper, three-dimensional finite element analysis is carried out to simulate pipe-plate structure. Based on the ANSYS software, the residual stress distribution of the pipe-plate structure during welding and after welding is predicted. The calculation results show that the residual stress of weld bead is higher than other places. The radial stress, hoop stress and axial stress are not significantly sensitive to the angle.


2009 ◽  
Vol 27 (2) ◽  
pp. 240s-244s ◽  
Author(s):  
Akira MAEKAWA ◽  
Michiyasu NODA ◽  
Shigeru TAKAHASHI ◽  
Toru OUMAYA ◽  
Hisashi SERIZAWA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document