Poiseuille, thermal transpiration and Couette flows of a rarefied gas between plane parallel walls with nonuniform surface properties in the transverse direction and their reciprocity relations

2018 ◽  
Vol 50 (2) ◽  
pp. 025502
Author(s):  
Toshiyuki Doi
2015 ◽  
Vol 137 (10) ◽  
Author(s):  
Toshiyuki Doi

Poiseuille flow and thermal transpiration of a rarefied gas between parallel plates with nonuniform surface properties in the transverse direction are studied based on kinetic theory. We considered a simplified model in which one wall is a diffuse reflection boundary and the other wall is a Maxwell-type boundary on which the accommodation coefficient varies periodically and smoothly in the transverse direction. The spatially two-dimensional (2D) problem in the cross section is studied numerically based on the linearized Bhatnagar–Gross–Krook–Welander (BGKW) model of the Boltzmann equation. The flow behavior, i.e., the macroscopic flow velocity and the mass flow rate of the gas as well as the velocity distribution function, is studied over a wide range of the mean free path of the gas and the parameters of the distribution of the accommodation coefficient. The mass flow rate of the gas is approximated by a simple formula consisting of the data of the spatially one-dimensional (1D) problems. When the mean free path is large, the distribution function assumes a wavy variation in the molecular velocity space due to the effect of a nonuniform surface property of the plate.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
Toshiyuki Doi

Plane thermal transpiration of a rarefied gas between two walls of Maxwell-type boundaries with different accommodation coefficients is studied based on the linearized Boltzmann equation for a hard-sphere molecular gas. The Boltzmann equation is solved numerically using a finite difference method, in which the collision integral is evaluated by the numerical kernel method. The detailed numerical data, including the mass and heat flow rates of the gas, are provided over a wide range of the Knudsen number and the entire range of the accommodation coefficients. Unlike in the plane Poiseuille flow, the dependence of the mass flow rate on the accommodation coefficients shows different characteristics depending on the Knudsen number. When the Knudsen number is relatively large, the mass flow rate of the gas increases monotonically with the decrease in either of the accommodation coefficients like in Poiseuille flow. When the Knudsen number is small, in contrast, the mass flow rate does not vary monotonically but exhibits a minimum with the decrease in either of the accommodation coefficients. The mechanism of this phenomenon is discussed based on the flow field of the gas.


2011 ◽  
Vol 669 ◽  
pp. 242-259 ◽  
Author(s):  
SHIGERU TAKATA ◽  
HITOSHI FUNAGANE

Poiseuille and thermal transpiration flows of a highly rarefied gas are investigated on the basis of the linearized Boltzmann equation, with a special interest in the over-concentration of molecules on velocities parallel to the walls. An iterative approximation procedure with an explicit error estimate is presented, by which the structure of the over-concentration is clarified. A numerical computation on the basis of the procedure is performed for a hard-sphere molecular gas to construct a database that promptly gives the induced net mass flow for an arbitrary value of large Knudsen numbers. An asymptotic formula of the net mass flow is also presented for molecular models belonging to Grad's hard potential. Finally, the resemblance of the profiles between the heat flow of the Poiseuille flow and the flow velocity of the thermal transpiration is pointed out. The reason is also given.


Sign in / Sign up

Export Citation Format

Share Document