scholarly journals Quantum-enhanced rubidium atomic magnetometer based on Faraday rotation via 795-nm Stokes operator squeezed light

2021 ◽  
Author(s):  
Lele BAI ◽  
Xin WEN ◽  
Yulin YANG ◽  
Lulu ZHANG ◽  
Jun He ◽  
...  
1988 ◽  
Vol 49 (C8) ◽  
pp. C8-969-C8-970 ◽  
Author(s):  
F. D'Orazio ◽  
F. Giammaria ◽  
F. Lucari ◽  
G. Parone
Keyword(s):  

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-961-C8-962
Author(s):  
M. Guillot ◽  
H. Le Gall ◽  
A. Marchand ◽  
A. Barlet ◽  
M. Artinian ◽  
...  
Keyword(s):  

1995 ◽  
Author(s):  
Hermann A. Haus ◽  
Karen Bergman ◽  
Luc Boivin

1996 ◽  
Vol 21 (17) ◽  
pp. 1396 ◽  
Author(s):  
K. Schneider ◽  
R. Bruckmeier ◽  
H. Hansen ◽  
S. Schiller ◽  
J. Mlynek

2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


2021 ◽  
Vol 129 (18) ◽  
pp. 183103
Author(s):  
Minyu Gu ◽  
Krzysztof A. Michalski
Keyword(s):  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Gaetano Frascella ◽  
Sascha Agne ◽  
Farid Ya. Khalili ◽  
Maria V. Chekhova

AbstractAmong the known resources of quantum metrology, one of the most practical and efficient is squeezing. Squeezed states of atoms and light improve the sensing of the phase, magnetic field, polarization, mechanical displacement. They promise to considerably increase signal-to-noise ratio in imaging and spectroscopy, and are already used in real-life gravitational-wave detectors. But despite being more robust than other states, they are still very fragile, which narrows the scope of their application. In particular, squeezed states are useless in measurements where the detection is inefficient or the noise is high. Here, we experimentally demonstrate a remedy against loss and noise: strong noiseless amplification before detection. This way, we achieve loss-tolerant operation of an interferometer fed with squeezed and coherent light. With only 50% detection efficiency and with noise exceeding the level of squeezed light more than 50 times, we overcome the shot-noise limit by 6 dB. Sub-shot-noise phase sensitivity survives up to 87% loss. Application of this technique to other types of optical sensing and imaging promises a full use of quantum resources in these fields.


Sign in / Sign up

Export Citation Format

Share Document