squeezed states
Recently Published Documents


TOTAL DOCUMENTS

871
(FIVE YEARS 88)

H-INDEX

59
(FIVE YEARS 5)

2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Thomas Colas ◽  
Julien Grain ◽  
Vincent Vennin

AbstractWe construct the four-mode squeezed states and study their physical properties. These states describe two linearly-coupled quantum scalar fields, which makes them physically relevant in various contexts such as cosmology. They are shown to generalise the usual two-mode squeezed states of single-field systems, with additional transfers of quanta between the fields. To build them in the Fock space, we use the symplectic structure of the phase space. For this reason, we first present a pedagogical analysis of the symplectic group $$\mathrm {Sp}(4,{\mathbb {R}})$$ Sp ( 4 , R ) and its Lie algebra, from which we construct the four-mode squeezed states and discuss their structure. We also study the reduced single-field system obtained by tracing out one of the two fields. This procedure being easier in the phase space, it motivates the use of the Wigner function which we introduce as an alternative description of the state. It allows us to discuss environmental effects in the case of linear interactions. In particular, we find that there is always a range of interaction coupling for which decoherence occurs without substantially affecting the power spectra (hence the observables) of the system.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Longqing Cong ◽  
Jiaguang Han ◽  
Weili Zhang ◽  
Ranjan Singh

AbstractLosses are ubiquitous and unavoidable in nature inhibiting the performance of most optical processes. Manipulating losses to adjust the dissipation of photons is analogous to braking a running car that is as important as populating photons via a gain medium. Here, we introduce the transient loss boundary into a photon populated cavity that functions as a ‘photon brake’ and probe photon dynamics by engineering the ‘brake timing’ and ‘brake strength’. Coupled cavity photons can be distinguished by stripping one photonic mode through controlling the loss boundary, which enables the transition from a coupled to an uncoupled state. We interpret the transient boundary as a perturbation by considering both real and imaginary parts of permittivity, and the dynamic process is modeled with a temporal two-dipole oscillator: one with the natural resonant polarization and the other with a frequency-shift polarization. The model unravels the underlying mechanism of concomitant coherent spectral oscillations and generation of tone-tuning cavity photons in the braking process. By synthesizing the temporal loss boundary into a photon populated cavity, a plethora of interesting phenomena and applications are envisioned such as the observation of quantum squeezed states, low-loss nonreciprocal waveguides and ultrafast beam scanning devices.


2021 ◽  
Vol 2075 (1) ◽  
pp. 012001
Author(s):  
R Julius ◽  
A-B M A Ibrahim ◽  
A N Alias ◽  
M S A Halim

Abstract We demonstrate the generation of squeezed states of light due to the second harmonic generation and Kerr effect in an array of nonlinear waveguides mediated through a linear one. We characterized the electromagnetic field by a quantum mechanical Hamiltonian and the density operator time evolution is obtained from the Von-Neumann equation of motion. Using the quasiprobability positive P of phase space representation, the classical Fokker-Planck equation is obtained from the master equation and translated to its classical matching set of nonlinear differential equations. We showed that because of the new possibilities of correlation between the linear and nonlinear channel waveguides, highly nonclassical light may be produced.


2021 ◽  
Vol 2075 (1) ◽  
pp. 012002
Author(s):  
Mohd Syafiq M. Hanapi ◽  
Abdel-Baset M.A. Ibrahim ◽  
Rafael Julius

Abstract The generation of squeezed states of light in two guided waves Kerr nonlinear coupler (KNLC) was examined using both the analytical perturbative (AP) and the short-time approximation (STA) method. A comparative analysis between these two methods is provided. We have found that, at certain combinations of input parameters, the STA method may not be able to detect the generation of squeezed states of light in the current KNLC system. Consequently, some essential physics could be lost. On the other hand, for the AP method, all time-dependent terms are included in the mode solutions which improves its sensitivity to detect the generation of squeezed states.


2021 ◽  
Vol 104 (3) ◽  
Author(s):  
Aaron Z. Goldberg ◽  
Khabat Heshami
Keyword(s):  

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
L. McCuller ◽  
S. E. Dwyer ◽  
A. C. Green ◽  
Haocun Yu ◽  
K. Kuns ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Nima Lashkari ◽  
Hong Liu ◽  
Srivatsan Rajagopal

Abstract We develop new techniques for studying the modular and the relative modular flows of general excited states. We show that the class of states obtained by acting on the vacuum (or any cyclic and separating state) with invertible operators from the algebra of a region is dense in the Hilbert space. This enables us to express the modular and the relative modular operators, as well as the relative entropies of generic excited states in terms of the vacuum modular operator and the operator that creates the state. In particular, the modular and the relative modular flows of any state can be expanded in terms of the modular flow of operators in vacuum. We illustrate the formalism with simple examples including states close to the vacuum, and coherent and squeezed states in generalized free field theory.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 526
Author(s):  
Joaquin Medina Dueñas ◽  
Gabriel O'Ryan Pérez ◽  
Carla Hermann-Avigliano ◽  
Luis E. F. Foa Torres

What is the role of topology in the propagation of quantum light in photonic lattices? We address this question by studying the propagation of squeezed states in a topological one-dimensional waveguide array, benchmarking our results with those for a topologically trivial localized state, and studying their robustness against disorder. Specifically, we study photon statistics, one-mode and two-mode squeezing, and entanglement generation when the localized state is excited with squeezed light. These quantum properties inherit the shape of the localized state but, more interestingly, and unlike in the topologically trivial case, we find that propagation of squeezed light in a topologically protected state robustly preserves the phase of the squeezed quadrature as the system evolves. We show how this latter topological advantage can be harnessed for quantum information protocols.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1919
Author(s):  
Yulia V. Vladimirova ◽  
Victor N. Zadkov

This review is devoted to the study of effects of quantum optics in nanostructures. The mechanisms by which the rates of radiative and nonradiative decay are modified are considered in the model of a two-level quantum emitter (QE) near a plasmonic nanoparticle (NP). The distributions of the intensity and polarization of the near field around an NP are analyzed, which substantially depend on the polarization of the external field and parameters of plasmon resonances of the NP. The effects of quantum optics in the system NP + QE plus external laser field are analyzed—modification of the resonance fluorescence spectrum of a QE in the near field, bunching/antibunching phenomena, quantum statistics of photons in the spectrum, formation of squeezed states of light, and quantum entangled states in these systems.


Sign in / Sign up

Export Citation Format

Share Document