Effect of nano/micro B4C and SiC particles on fracture properties of aluminum 7075 particulate composites under chevron-notch plane strain fracture toughness test

2016 ◽  
Vol 3 (12) ◽  
pp. 125026 ◽  
Author(s):  
M R Morovvati ◽  
A Lalehpour ◽  
A Esmaeilzare
2011 ◽  
Vol 320 ◽  
pp. 263-268
Author(s):  
Wen Lin Liu ◽  
Ri Jie Yang ◽  
Zhi Tao Mu ◽  
Xiu Xia Wang ◽  
Da Zhao Yu

Plane strain fracture toughness is an important mechanical performance index for damage tolerance design, so how to obtain this value through test deserves consideration. In this paper, the ductile fracture toughness test was performed. It was difficult for the specimen with big dimensions in the case of plane strain to be carried out through ordinary testing machine with lower capacity because of the higher fracture toughness value of the material, that it was attained indirectly for plane strain fracture toughness value by the way of ductile fracture toughness test and pertinent formula calculation if proper specimen selected. The fracture property tests according to the corresponding standard were conducted. The compact tension specimens were obtained from the main rotor butt of a helicopter in service. Based on the single specimen measuring ductile fracture toughness method, the experiments of measuring the ductile fracture toughness were carried out. A method was given to determine the optimum fitting probabilistic distribution function of fracture toughness in the small sample size. The statistic results show that the optimum probabilistic distribution function of ductile fracture toughness is the Extreme Maximum. Value distribution. The following factors were taken into account, the linear relative coefficient, total fit effect probability relative coefficient, consistency with the relevant fatigue physics and tail most importantly, safety of design evaluation. The shape parameter, scale parameter, and location parameter are -1.1231, 860.53, 6036.4, respectively. The statistical variation coefficient is 11.22%. The result shows that there is a large risk probability for a definite value to fracture toughness only with one or two pieces of samples according to the test.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shuang Gong ◽  
Zhen Wang ◽  
Lei Zhou ◽  
Wen Wang

To study the tensile and fracture properties of the specimen under the quasistatic loading, the Brazilian disc splitting method and the notched semicircular bend (NSCB) method were used to test the tensile properties of coal specimens, and the fracture properties of NSCB specimens with different notch depths were tested and analyzed. The applicability of plane strain fracture toughness KIC and J-integral fracture toughness in evaluating the fracture properties of coal specimens was discussed. The influence of notch depth on the fracture toughness measurement of the NSCB specimen was studied. Combined with the surface strain monitoring of specimens during loading and the industrial CT scanning image of damaged specimens, the deformation characteristics of coal specimen under loads and the distribution law of crack after failure were analyzed. The results show that the NSCB test is suitable for measuring the tensile strength of a coal specimen; when the dimensionless notch depth is β = 0.28, the dispersion of plane strain fracture toughness KIC of the NSCB specimen is the smallest. Besides, the plane strain fracture toughness of coal is obviously affected by the notch depth and dimensionless stress intensity factor. The J-integral fracture toughness can be used to effectively evaluate the fracture performance of specimens.


Sign in / Sign up

Export Citation Format

Share Document