ECG simulator with configurable skin-electrode impedance and artifacts emulation

Author(s):  
Daniel Gonçalves Pita Santos de Almeida ◽  
João Costa ◽  
André Lourenço
2022 ◽  
Author(s):  
Hao Chu ◽  
Chenxi Yang ◽  
Yantao Xing ◽  
Jianqing Li ◽  
Chengyu Liu

Abstract PurposeLong-term electrocardiogram (ECG) monitoring is an essential approach for the early diagnosis of cardiovascular diseases. Flexible dry electrodes that contains electrolyte without water could be a potential substitution of wet electrodes for long-term ECG monitoring. Therefore, this paper developes a long-term, portable ECG patch based on flexible dry electrodes, namely SEUECG-100.MethodA device consists of analog-front-end acquisition, data acquisition, and storage modules is developed and tested. An impedance test was conducted to compare the skin-electrode impedance of the flexible dry electrode and the Ag/AgCl wet electrode. The ECG signals were simutanously collected from the same subject using the SEUECG-100 and Shimmer device , which were then compared and analyzed from the perspective of ECG morphology, RR interval, and signal quality indices (SQI).ResultsThe experimental results reveal that the flexible dry electrode has the characteristics of low skin-electrode impedance. SEUECG-100 could collect high-quality ECG signals. The ECG signals collected by the two devices have a high RR interval correlation (r=0.999). SQI results show that SEUECG-100 is better than the Shimmer device in overcoming baseline drift. Long-term ECG acquisition and storage experiments show that SEUECG-100 could collect ECG signals with good stability and high reliability.ConclusionThe implementation of the proposed system design with dry electrodes could can effectively record long-term ECG monitoring with high quality in comparison to systems with wet electrodes from both impedance characteristics and signal morphology aspects.


1968 ◽  
Vol 76 (4) ◽  
pp. 514-525 ◽  
Author(s):  
Alan S. Berson ◽  
Hubert V. Pipberger

Sign in / Sign up

Export Citation Format

Share Document