Inverse Modeling An introduction to the theory and methods of inverse problems and data assimilation

Author(s):  
Gen Nakamura
2021 ◽  
Author(s):  
Ronan Fablet ◽  
Bertrand Chapron ◽  
Lucas Drumetz ◽  
Etienne Memin ◽  
Olivier Pannekoucke ◽  
...  

<p>This paper addresses representation learning for the resolution of inverse problems  with geophysical dynamics. Among others, examples of inverse problems of interest include space-time interpolation, short-term forecasting, conditional simulation w.r.t. available observations, downscaling problems… From a methodological point of view, we rely on a variational data assimilation framework. Data assimilation (DA) aims to reconstruct the time evolution of some state given a series of  observations, possibly noisy and irregularly-sampled. Here, we investigate DA from a machine learning point of view backed by an underlying variational representation.  Using automatic differentiation tools embedded in deep learning frameworks, we introduce end-to-end neural network architectures for variational data assimilation. It comprises two key components: a variational model and a gradient-based solver both implemented as neural networks. A key feature of the proposed end-to-end learning architecture is that we may train the neural networks models using both supervised and unsupervised strategies. We first illustrate applications to the reconstruction of Lorenz-63 and Lorenz-96 systems from partial and noisy observations. Whereas the gain issued from the supervised learning setting emphasizes the relevance of groundtruthed observation dataset for real-world case-studies, these results also suggest new means to design data assimilation models from data. Especially, they suggest that learning task-oriented representations of the underlying dynamics may be beneficial. We further discuss applications to short-term forecasting and sampling design along with preliminary results for the reconstruction of sea surface currents from satellite altimetry data. </p><p>This abstract is supported by a preprint available online: https://arxiv.org/abs/2007.12941</p>


2020 ◽  
Vol 591 ◽  
pp. 125266 ◽  
Author(s):  
Hojat Ghorbanidehno ◽  
Amalia Kokkinaki ◽  
Jonghyun Lee ◽  
Eric Darve

2016 ◽  
Vol 16 (2) ◽  
pp. 989-1002 ◽  
Author(s):  
P. Wang ◽  
H. Wang ◽  
Y. Q. Wang ◽  
X. Y. Zhang ◽  
S. L. Gong ◽  
...  

Abstract. Emissions inventories of black carbon (BC), which are traditionally constructed using a bottom-up approach based on activity data and emissions factors, are considered to contain a large level of uncertainty. In this paper, an ensemble optimal interpolation (EnOI) data assimilation technique is used to investigate the possibility of optimally recovering the spatially resolved emissions bias of BC. An inverse modeling system for emissions is established for an atmospheric chemistry aerosol model and two key problems related to ensemble data assimilation in the top-down emissions estimation are discussed: (1) how to obtain reasonable ensembles of prior emissions and (2) establishing a scheme to localize the background-error matrix. An experiment involving 1-year-long simulation cycle with EnOI inversion of BC emissions is performed for 2008. The bias of the BC emissions intensity in China at each grid point is corrected by this inverse system. The inverse emission over China in January is 240.1 Gg, and annual emission is about 2539.3 Gg, which is about 1.8 times of bottom-up emission inventory. The results show that, even though only monthly mean BC measurements are employed to inverse the emissions, the accuracy of the daily model simulation improves. Using top-down emissions, the average root mean square error of simulated daily BC is decreased by nearly 30 %. These results are valuable and promising for a better understanding of aerosol emissions and distributions, as well as aerosol forecasting.


2014 ◽  
Vol 7 (1) ◽  
pp. 303-315 ◽  
Author(s):  
S. M. Miller ◽  
A. M. Michalak ◽  
P. J. Levi

Abstract. Many inverse problems in the atmospheric sciences involve parameters with known physical constraints. Examples include nonnegativity (e.g., emissions of some urban air pollutants) or upward limits implied by reaction or solubility constants. However, probabilistic inverse modeling approaches based on Gaussian assumptions cannot incorporate such bounds and thus often produce unrealistic results. The atmospheric literature lacks consensus on the best means to overcome this problem, and existing atmospheric studies rely on a limited number of the possible methods with little examination of the relative merits of each. This paper investigates the applicability of several approaches to bounded inverse problems. A common method of data transformations is found to unrealistically skew estimates for the examined example application. The method of Lagrange multipliers and two Markov chain Monte Carlo (MCMC) methods yield more realistic and accurate results. In general, the examined MCMC approaches produce the most realistic result but can require substantial computational time. Lagrange multipliers offer an appealing option for large, computationally intensive problems when exact uncertainty bounds are less central to the analysis. A synthetic data inversion of US anthropogenic methane emissions illustrates the strengths and weaknesses of each approach.


2011 ◽  
Vol 46 (1) ◽  
pp. 168-173 ◽  
Author(s):  
C.J. Budd ◽  
M.A. Freitag ◽  
N.K. Nichols

Sign in / Sign up

Export Citation Format

Share Document