Humoral and Cellular Immune Responses in Rhesus Macaques Infected with Human Immunodeficiency Virus Type 2

1995 ◽  
Vol 11 (3) ◽  
pp. 383-393 ◽  
Author(s):  
ALASH'LE G. ABIMIKU ◽  
GENOVEFFA FRANCHINI ◽  
KRISTINE ALDRICH ◽  
MARIA MYAGKIKH ◽  
PHILLIP MARKHAM ◽  
...  
2001 ◽  
Vol 184 (4) ◽  
pp. 488-496 ◽  
Author(s):  
Pauline N. M. Mwinzi ◽  
Diana M. S. Karanja ◽  
Daniel G. Colley ◽  
Alloys S. S. Orago ◽  
W. Evan Secor

2000 ◽  
Vol 74 (13) ◽  
pp. 5997-6005 ◽  
Author(s):  
Jian-Tai Qiu ◽  
Bindong Liu ◽  
Chunjuan Tian ◽  
George N. Pavlakis ◽  
Xiao-Fang Yu

ABSTRACT In this study, we have investigated the influence of antigen targeting after DNA vaccination upon the induction of cellular immune responses against human immunodeficiency virus type 1 (HIV-1) Gag. In addition to the standard version of HIV-1 Gag, we constructed Gag expression vectors that encode a secreted (Sc-Gag) and a cytoplasmic (Cy-Gag) Gag molecule. Although all three HIV-1 Gag expression vectors induced detectable humoral and cellular immune responses, after intramuscular injection the DNA vector encoding the Sc-Gag generated the highest primary cytotoxic T-lymphocyte (CTL) and T-helper responses. Mice immunized with one of the HIV-1 Gag DNA vectors (but not with the control vector pcDNA3.1) developed a protective immune response against infection with recombinant vaccinia virus expressing HIV-1 Gag, and this response persisted for 125 days. The magnitude of the protection correlated with the levels of Gag-specific ex vivo CTL activity and the number of CD8+ T cells producing gamma interferon. The DNA vector encoding the Sc-Gag induced higher levels of protection and greater secondary CTL responses than did the DNA vector encoding Cy-Gag.


2001 ◽  
Vol 75 (13) ◽  
pp. 5879-5890 ◽  
Author(s):  
David C. Montefiori ◽  
Jeffrey T. Safrit ◽  
Shari L. Lydy ◽  
Ashley P. Barry ◽  
Miroslawa Bilska ◽  
...  

ABSTRACT The ability to generate antibodies that cross-neutralize diverse primary isolates is an important goal for human immunodeficiency virus type 1 (HIV-1) vaccine development. Most of the candidate HIV-1 vaccines tested in humans and nonhuman primates have failed in this regard. Past efforts have focused almost entirely on the envelope glycoproteins of a small number of T-cell line-adapted strains of the virus as immunogens. Here we assessed the immunogenicity of noninfectious virus-like particles (VLP) consisting of Gag, Pro (protease), and Env from R5 primary isolate HIV-1Bx08. Immunogens were delivered to rhesus macaques in the form of either purified VLP, recombinant DNA and canarypox (ALVAC) vectors engineered to express VLP, or a combination of these products. Seroconversion to Gag and Pro was detected in all of the immunized animals. Antibodies that could neutralize HIV-1Bx08 were detected in animals that received (i) coinoculations with DNABx08 and VLPBx08, (ii) DNABx08 followed by ALVACBx08 boosting, and (iii) VLPBx08 alone. The neutralizing antibodies were highly strain specific despite the fact that they did not appear to be directed to linear epitopes in the V3 loop. Virus-specific cellular immune responses also were generated, as judged by the presence of Gag-specific gamma interferon (IFN-γ)-producing cells. These cellular immune responses required the inclusion of DNABx08 in the immunization modality, since few or no IFN-γ-producing cells were detected in animals that received either VLPBx08 or ALVACBx08 alone. The results demonstrate the feasibility of generating neutralizing antibodies and cellular immune responses that target an R5 primary HIV-1 isolate by vaccination in primates.


2000 ◽  
Vol 74 (16) ◽  
pp. 7651-7655 ◽  
Author(s):  
Juan C. Ramírez ◽  
M. Magdalena Gherardi ◽  
Dolores Rodríguez ◽  
Mariano Esteban

ABSTRACT A problem associated with the use of vaccinia virus recombinants as vaccines is the existence of a large human population with preexisting immunity to the vector. Here we showed that after a booster with attenuated recombinant modified vaccinia virus Ankara (rMVA), higher humoral and cellular immune responses to foreign antigens (human immunodeficiency virus type 1 Env and β-galactosidase) were found in mice preimmunized with rMVA than in mice primed with the virulent Western Reserve strain and boosted with rMVA. This enhancement correlated with higher levels of expression of foreign antigens after the booster.


2003 ◽  
Vol 77 (23) ◽  
pp. 12764-12772 ◽  
Author(s):  
Wing-Pui Kong ◽  
Yue Huang ◽  
Zhi-Yong Yang ◽  
Bimal K. Chakrabarti ◽  
Zoe Moodie ◽  
...  

ABSTRACT The ability to elicit an immune response to a spectrum of human immunodeficiency virus type 1 (HIV-1) gene products from divergent strains is a desirable feature of an AIDS vaccine. In this study, we examined combinations of plasmids expressing multiple HIV-1 genes from different clades for their ability to elicit humoral and cellular immune responses in mice. Immunization with a modified Env, gp145ΔCFI, in combination with a Gag-Pol-Nef fusion protein plasmid elicited similar CD4+ and CD8+ cellular responses to immunization with either vector alone. Further, when mice were immunized with a mixture of Env from three clades, A, B, and C, together with Gag-Pol-Nef, the overall potency and balance of CD4+- and CD8+-T-cell responses to all viral antigens were similar, with only minor differences noted. In addition, plasmid mixtures elicited antibody responses comparable to those from individual inoculations. These findings suggest that a multigene and multiclade vaccine, including components from A, B, and C Env and Gag-Pol-Nef, can broaden antiviral immune responses without immune interference. Such combinations of immunogens may help to address concerns about viral genetic diversity for a prospective HIV-1 vaccine.


Sign in / Sign up

Export Citation Format

Share Document