scholarly journals Epstein–Barr Virus Lytic Reactivation Activates B Cells Polyclonally and Induces Activation-Induced Cytidine Deaminase Expression: A Mechanism Underlying Autoimmunity and Its Contribution to Graves' Disease

2017 ◽  
Vol 30 (3) ◽  
pp. 240-249 ◽  
Author(s):  
Keiko Nagata ◽  
Keisuke Kumata ◽  
Yuji Nakayama ◽  
Yukio Satoh ◽  
Hirotsugu Sugihara ◽  
...  
2016 ◽  
Vol 213 (6) ◽  
pp. 921-928 ◽  
Author(s):  
Jens S. Kalchschmidt ◽  
Rachael Bashford-Rogers ◽  
Kostas Paschos ◽  
Adam C.T. Gillman ◽  
Christine T. Styles ◽  
...  

Activation-induced cytidine deaminase (AID), the enzyme responsible for induction of sequence variation in immunoglobulins (Igs) during the process of somatic hypermutation (SHM) and also Ig class switching, can have a potent mutator phenotype in the development of lymphoma. Using various Epstein-Barr virus (EBV) recombinants, we provide definitive evidence that the viral nuclear protein EBNA3C is essential in EBV-infected primary B cells for the induction of AID mRNA and protein. Using lymphoblastoid cell lines (LCLs) established with EBV recombinants conditional for EBNA3C function, this was confirmed, and it was shown that transactivation of the AID gene (AICDA) is associated with EBNA3C binding to highly conserved regulatory elements located proximal to and upstream of the AICDA transcription start site. EBNA3C binding initiated epigenetic changes to chromatin at specific sites across the AICDA locus. Deep sequencing of cDNA corresponding to the IgH V-D-J region from the conditional LCL was used to formally show that SHM is activated by functional EBNA3C and induction of AID. These data, showing the direct targeting and induction of functional AID by EBNA3C, suggest a novel role for EBV in the etiology of B cell cancers, including endemic Burkitt lymphoma.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Yuchen Zhang ◽  
Chang Jiang ◽  
Stephen J. Trudeau ◽  
Yohei Narita ◽  
Bo Zhao ◽  
...  

ABSTRACT Epstein-Barr virus (EBV) infects 95% of adults worldwide and causes infectious mononucleosis. EBV is associated with endemic Burkitt lymphoma, Hodgkin lymphoma, posttransplant lymphomas, nasopharyngeal and gastric carcinomas. In these cancers and in most infected B-cells, EBV maintains a state of latency, where nearly 80 lytic cycle antigens are epigenetically suppressed. To gain insights into host epigenetic factors necessary for EBV latency, we recently performed a human genome-wide CRISPR screen that identified the chromatin assembly factor CAF1 as a putative Burkitt latency maintenance factor. CAF1 loads histones H3 and H4 onto newly synthesized host DNA, though its roles in EBV genome chromatin assembly are uncharacterized. Here, we found that CAF1 depletion triggered lytic reactivation and virion secretion from Burkitt cells, despite also strongly inducing interferon-stimulated genes. CAF1 perturbation diminished occupancy of histones 3.1 and 3.3 and of repressive histone 3 lysine 9 and 27 trimethyl (H3K9me3 and H3K27me3) marks at multiple viral genome lytic cycle regulatory elements. Suggestive of an early role in establishment of latency, EBV strongly upregulated CAF1 expression in newly infected primary human B-cells prior to the first mitosis, and histone 3.1 and 3.3 were loaded on the EBV genome by this time point. Knockout of CAF1 subunit CHAF1B impaired establishment of latency in newly EBV-infected Burkitt cells. A nonredundant latency maintenance role was also identified for the DNA synthesis-independent histone 3.3 loader histone regulatory homologue A (HIRA). Since EBV latency also requires histone chaperones alpha thalassemia/mental retardation syndrome X-linked chromatin remodeler (ATRX) and death domain-associated protein (DAXX), EBV coopts multiple host histone pathways to maintain latency, and these are potential targets for lytic induction therapeutic approaches. IMPORTANCE Epstein-Barr virus (EBV) was discovered as the first human tumor virus in endemic Burkitt lymphoma, the most common childhood cancer in sub-Saharan Africa. In Burkitt lymphoma and in 200,000 EBV-associated cancers per year, epigenetic mechanisms maintain viral latency, during which lytic cycle factors are silenced. This property complicated EBV’s discovery and facilitates tumor immunoevasion. DNA methylation and chromatin-based mechanisms contribute to lytic gene silencing. Here, we identified histone chaperones CAF1 and HIRA, which have key roles in host DNA replication-dependent and replication-independent pathways, respectively, as important for EBV latency. EBV strongly upregulates CAF1 in newly infected B-cells, where viral genomes acquire histone 3.1 and 3.3 variants prior to the first mitosis. Since histone chaperones ATRX and DAXX also function in maintenance of EBV latency, our results suggest that EBV coopts multiple histone pathways to reprogram viral genomes and highlight targets for lytic induction therapeutic strategies.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Kentaro Kikuchi ◽  
Toshiyuki Ishige ◽  
Fumio Ide ◽  
Yumi Ito ◽  
Ichiro Saito ◽  
...  

Recent research has shown that activation-induced cytidine deaminase (AID) triggers somatic hypermutation and recombination, in turn contributing to lymphomagenesis. Such aberrant AID expression is seen in B-cell leukemia/lymphomas, including Burkitt lymphoma which is associated withc-myctranslocation. Moreover, Epstein-Barr virus (EBV) latent membrane protein-1 (LMP-1) increases genomic instability through early growth transcription response-1 (Egr-1) mediated upregulation of AID in B-cell lymphoma. However, few clinicopathological studies have focused on AID expression in lymphoproliferative disorders (LPDs). Therefore, we conducted an immunohistochemical study to investigate the relationship between AID and LMP-1 expression in LPDs (MTX-/Age-related EBV-associated), including diffuse large B-cell lymphomas (DLBCLs). More intense AID expression was detected in LPDs (89.5%) than in DLBCLs (20.0%), and the expression of LMP-1 and EBER was more intense in LPDs (68.4% and 94.7%) than in DLBCLs (10.0% and 20.0%). Furthermore, stronger Egr-1 expression was found in MTX/Age-EBV-LPDs (83.3%) than in DLBCLs (30.0%). AID expression was significantly constitutively overexpressed in LPDs as compared with DLBCLs. These results suggest that increased AID expression in LPDs may be one of the processes involved in lymphomagenesis, thereby further increasing the survival of genetically destabilized B-cells. AID expression may be a useful indicator for differentiation between LPDs and DLBCLs.


2020 ◽  
Author(s):  
Yuchen Zhang ◽  
Chang Jiang ◽  
Stephen J. Trudeau ◽  
Yohei Narita ◽  
Bo Zhao ◽  
...  

ABSTRACTEpstein-Barr virus (EBV) infects 95% of adults worldwide and causes infectious mononucleosis. EBV is associated with endemic Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphomas, nasopharyngeal and gastric carcinomas. In these cancers and in most infected B-cells, EBV maintains a state of latency, where nearly 80 lytic cycle antigens are epigenetically suppressed. To gain insights into host epigenetic factors necessary for EBV latency, we recently performed a human genome-wide CRISPR screen that identified the chromatin assembly factor CAF1 as a putative Burkitt latency maintenance factor. CAF1 loads histones H3 and H4 onto newly synthesized host DNA, though its roles in EBV genome chromatin assembly are uncharacterized. Here, we identified that CAF1 depletion triggered lytic reactivation and transforming virion secretion from Burkitt cells, despite strongly also inducing interferon stimulated genes. CAF1 perturbation diminished occupancy of histones 3.1, 3.3 and repressive H3K9me3 and H3K27me3 marks at multiple viral genome lytic cycle regulatory elements. Suggestive of an early role in establishment of latency, EBV strongly upregulated CAF1 expression in newly infected primary human B-cells prior to the first mitosis, and histone 3.1 and 3.3 were loaded on the EBV genome by this timepoint. Knockout of CAF1 subunit CHAF1B impaired establishment of latency in newly EBV-infected Burkitt cells. A non-redundant latency maintenance role was also identified for the DNA synthesis-independent histone 3.3 loader HIRA. Since EBV latency also requires histone chaperones ATRX and DAXX, EBV coopts multiple host histone pathways to maintain latency, and these are potential targets for lytic induction therapeutic approaches.IMPORTANCEEpstein-Barr virus (EBV) was discovered as the first human tumor virus in endemic Burkitt lymphoma, the most common childhood cancer in sub-Saharan Africa. In Burkitt lymphoma and in 200,000 EBV-associated cancers per year, epigenetic mechanisms maintain viral latency, where lytic cycle factors are silenced. This property complicated EBV’s discovery and facilitates tumor immunoevasion. DNA methylation and chromatin-based mechanisms contribute to lytic gene silencing. Here, we identify histone chaperones CAF1 and HIRA, which have key roles in host DNA replication-dependent and replication independent pathways, respectively, are each important for EBV latency. EBV strongly upregulates CAF1 in newly infected B-cells, where viral genomes acquire histone 3.1 and 3.3 variants prior to the first mitosis. Since histone chaperones ATRX and DAXX also function in maintenance of EBV latency, our results suggest that EBV coopts multiple histone pathways to reprogram viral genomes and highlights targets for lytic induction therapeutic strategies.


Virology ◽  
2017 ◽  
Vol 507 ◽  
pp. 220-230 ◽  
Author(s):  
Lena N. Lupey-Green ◽  
Stephanie A. Moquin ◽  
Kayla A. Martin ◽  
Shane M. McDevitt ◽  
Michael Hulse ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document