scholarly journals Overgroups of regular unipotent elements in simple algebraic groups

2021 ◽  
Vol 8 (25) ◽  
pp. 788-822
Author(s):  
Gunter Malle ◽  
Donna Testerman

We investigate positive-dimensional closed reductive subgroups of almost simple algebraic groups containing a regular unipotent element. Our main result states that such subgroups do not lie inside proper parabolic subgroups unless possibly when their connected component is a torus. This extends the earlier result of Testerman and Zalesski treating connected reductive subgroups.

2016 ◽  
Vol 152 (8) ◽  
pp. 1697-1724 ◽  
Author(s):  
Tanmay Deshpande

In this paper, we extend the notion of Shintani descent to general (possibly disconnected) algebraic groups defined over a finite field $\mathbb{F}_{q}$. For this, it is essential to treat all the pure inner $\mathbb{F}_{q}$-rational forms of the algebraic group at the same time. We prove that the notion of almost characters (introduced by Shoji using Shintani descent) is well defined for any neutrally unipotent algebraic group, i.e. an algebraic group whose neutral connected component is a unipotent group. We also prove that these almost characters coincide with the ‘trace of Frobenius’ functions associated with Frobenius-stable character sheaves on neutrally unipotent groups. In the course of the proof, we also prove that the modular categories that arise from Boyarchenko and Drinfeld’s theory of character sheaves on neutrally unipotent groups are in fact positive integral, confirming a conjecture due to Drinfeld.


2018 ◽  
Vol 21 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Donna M. Testerman ◽  
Alexandre E. Zalesski

AbstractLetGbe a simply connected simple linear algebraic group of exceptional Lie type over an algebraically closed fieldFof characteristic{p\geq 0}, and let{u\in G}be a nonidentity unipotent element. Let ϕ be a non-trivial irreducible representation ofG. Then the Jordan normal form of{\phi(u)}contains at most one non-trivial block if and only ifGis of type{G_{2}},uis a regular unipotent element and{\dim\phi\leq 7}. Note that the irreducible representations of the simple classical algebraic groups in which a non-trivial unipotent element is represented by a matrix whose Jordan form has a single non-trivial block were determined by I. D. Suprunenko [21].


2014 ◽  
Vol 14 (1) ◽  
pp. 185-220 ◽  
Author(s):  
Abe Noriyuki ◽  
Kaneda Masaharu

AbstractWe show that the modules for the Frobenius kernel of a reductive algebraic group over an algebraically closed field of positive characteristic $p$ induced from the $p$-regular blocks of its parabolic subgroups can be $\mathbb{Z}$-graded. In particular, we obtain that the modules induced from the simple modules of $p$-regular highest weights are rigid and determine their Loewy series, assuming the Lusztig conjecture on the irreducible characters for the reductive algebraic groups, which is now a theorem for large $p$. We say that a module is rigid if and only if it admits a unique filtration of minimal length with each subquotient semisimple, in which case the filtration is called the Loewy series.


2018 ◽  
Vol 21 (3) ◽  
pp. 365-396 ◽  
Author(s):  
Mikko Korhonen

Abstract Let G be a simple algebraic group over an algebraically closed field K of characteristic {p>0} . We consider connected reductive subgroups X of G that contain a given distinguished unipotent element u of G. A result of Testerman and Zalesski [D. Testerman and A. Zalesski, Irreducibility in algebraic groups and regular unipotent elements, Proc. Amer. Math. Soc. 141 2013, 1, 13–28] shows that if u is a regular unipotent element, then X cannot be contained in a proper parabolic subgroup of G. We generalize their result and show that if u has order p, then except for two known examples which occur in the case {(G,p)=(C_{2},2)} , the subgroup X cannot be contained in a proper parabolic subgroup of G. In the case where u has order {>p} , we also present further examples arising from indecomposable tilting modules with quasi-minuscule highest weight.


2017 ◽  
Vol 20 (5) ◽  
Author(s):  
Martin W. Liebeck ◽  
Adam R. Thomas

AbstractWe determine all finite subgroups of simple algebraic groups that have irreducible centralizers – that is, centralizers whose connected component does not lie in a parabolic subgroup.


Sign in / Sign up

Export Citation Format

Share Document