scholarly journals Unipotent elements forcing irreducibility in linear algebraic groups

2018 ◽  
Vol 21 (3) ◽  
pp. 365-396 ◽  
Author(s):  
Mikko Korhonen

Abstract Let G be a simple algebraic group over an algebraically closed field K of characteristic {p>0} . We consider connected reductive subgroups X of G that contain a given distinguished unipotent element u of G. A result of Testerman and Zalesski [D. Testerman and A. Zalesski, Irreducibility in algebraic groups and regular unipotent elements, Proc. Amer. Math. Soc. 141 2013, 1, 13–28] shows that if u is a regular unipotent element, then X cannot be contained in a proper parabolic subgroup of G. We generalize their result and show that if u has order p, then except for two known examples which occur in the case {(G,p)=(C_{2},2)} , the subgroup X cannot be contained in a proper parabolic subgroup of G. In the case where u has order {>p} , we also present further examples arising from indecomposable tilting modules with quasi-minuscule highest weight.

Author(s):  
Indranil Biswas ◽  
Georg Schumacher

AbstractLet G be a simple linear algebraic group defined over an algebraically closed field k of characteristic p ≥ 0, and let P be a maximal proper parabolic subgroup of G. If p > 0, then we will assume that dimG/P ≤ p. Let ι : H ↪ G/P be a reduced smooth hypersurface in G/P of degree d. We will assume that the pullback homomorphism is an isomorphism (this assumption is automatically satisfied when dimH ≥ 3). We prove that the tangent bundle of H is stable if the two conditions τ(G/P) ≠ d and hold; here n = dimH, and τ(G/P) ∈ is the index of G/P which is defined by the identity = where L is the ample generator of Pic(G/P) and is the anti–canonical line bundle of G/P. If d = τ(G/P), then the tangent bundle TH is proved to be semistable. If p > 0, and then TH is strongly stable. If p > 0, and d = τ(G/P), then TH is strongly semistable.


Author(s):  
P. Bala ◽  
R. W. Carter

LetGbe a simple adjoint algebraic group over an algebraically closed fieldK. We are concerned to describe the conjugacy classes of unipotent elements ofG. Goperates on its Lie algebra g by means of the adjoint action and we may consider classes of nilpotent elements of g under this action. It has been shown by Springer (11) that there is a bijection between the unipotent elements ofGand the nilpotent elements ofgwhich preserves theG-action, provided that the characteristic ofKis either 0 or a ‘good prime’ forG. Thus we may concentrate on the problem of classifying the nilpotent elements of g under the adjointG-action.


2008 ◽  
Vol 11 ◽  
pp. 280-297 ◽  
Author(s):  
Willem A. de Graaf

AbstractLet G be a simple algebraic group over an algebraically closed field with Lie algebra g. Then the orbits of nilpotent elements of g under the adjoint action of G have been classified. We describe a simple algorithm for finding a representative of a nilpotent orbit. We use this to compute lists of representatives of these orbits for the Lie algebras of exceptional type. Then we give two applications. The first one concerns settling a conjecture by Elashvili on the index of centralizers of nilpotent orbits, for the case where the Lie algebra is of exceptional type. The second deals with minimal dimensions of centralizers in centralizers.


Author(s):  
Cristina Draper ◽  
Alberto Elduque

The maximal finite abelian subgroups, up to conjugation, of the simple algebraic group of type E8 over an algebraically closed field of characteristic 0 are computed. This is equivalent to the determination of the fine gradings on the simple Lie algebra of type E8 with trivial neutral homogeneous component. The Brauer invariant of the irreducible modules for graded semisimple Lie algebras plays a key role.


2015 ◽  
Vol 59 (4) ◽  
pp. 911-924 ◽  
Author(s):  
Jonathan Elmer ◽  
Martin Kohls

AbstractAbstract Let G be a linear algebraic group over an algebraically closed field 𝕜 acting rationally on a G-module V with its null-cone. Let δ(G, V) and σ(G, V) denote the minimal number d such that for every and , respectively, there exists a homogeneous invariant f of positive degree at most d such that f(v) ≠ 0. Then δ(G) and σ(G) denote the supremum of these numbers taken over all G-modules V. For positive characteristics, we show that δ(G) = ∞ for any subgroup G of GL2(𝕜) that contains an infinite unipotent group, and σ(G) is finite if and only if G is finite. In characteristic zero, δ(G) = 1 for any group G, and we show that if σ(G) is finite, then G0 is unipotent. Our results also lead to a more elementary proof that βsep(G) is finite if and only if G is finite.


2010 ◽  
Vol 9 (4) ◽  
pp. 719-739 ◽  
Author(s):  
Michael Finkelberg ◽  
Sergey Lysenko

AbstractLet k be an algebraically closed field and O = k[[t]] ⊂ F = k((t)). For an almost simple algebraic group G we classify central extensions 1 → $\mathbb{G}_m\to E\to G(\bm{F})\$m → E → G(F) → 1; any such extension splits canonically over G(O). Fix a positive integer N and a primitive character ζ : μN(K) →$\mathbb{Q}}_\ell^*}$ (under some assumption on the characteristic of k). Consider the category of G(O)-bi-invariant perverse sheaves on E with $\mathbb{G}_m$m-monodromy ζ. We show that this is a tensor category, which is tensor equivalent to the category of representations of a reductive group ǦE,N. We compute the root datum of ǦE,N.


2012 ◽  
Vol 15 (5) ◽  
Author(s):  
R. Lawther

Abstract.Given either a simple algebraic group or a finite group of Lie type, of rank at least 2, and a maximal parabolic subgroup, we determine which non-trivial unipotent classes have the property that their intersection with the parabolic subgroup is contained within its unipotent radical. Such classes are rare; listing them provides a basis for inductive arguments.


1986 ◽  
Vol 38 (3) ◽  
pp. 751-768 ◽  
Author(s):  
Mohan S. Putcha

Introduction. Let K be an algebraically closed field, G = SL(3, K) the group of 3 × 3 matrices over K of determinant 1. Let denote the monoid of all 3 × 3 matrices over K. If e is an idempotent in , thenare opposite parabolic subgroups of G in the usual sense [1], [28]. However the mapdoes not exhaust all pairs of opposite parabolic subgroups of G. Now consider the representation ϕ:G → SL(6, K) given by


2019 ◽  
Vol 7 ◽  
Author(s):  
TIMOTHY C. BURNESS ◽  
DONNA M. TESTERMAN

Let $G$ be a simple exceptional algebraic group of adjoint type over an algebraically closed field of characteristic $p>0$ and let $X=\text{PSL}_{2}(p)$ be a subgroup of $G$ containing a regular unipotent element $x$ of $G$. By a theorem of Testerman, $x$ is contained in a connected subgroup of $G$ of type $A_{1}$. In this paper we prove that with two exceptions, $X$ itself is contained in such a subgroup (the exceptions arise when $(G,p)=(E_{6},13)$ or $(E_{7},19)$). This extends earlier work of Seitz and Testerman, who established the containment under some additional conditions on $p$ and the embedding of $X$ in $G$. We discuss applications of our main result to the study of the subgroup structure of finite groups of Lie type.


Sign in / Sign up

Export Citation Format

Share Document