The Finite Field Distance Problem

2021 ◽  
Author(s):  
David Covert
2017 ◽  
Vol 13 (09) ◽  
pp. 2319-2333
Author(s):  
S. D. Adhikari ◽  
Anirban Mukhopadhyay ◽  
M. Ram Murty

In this paper, we give a proof of the result of Iosevich and Rudnev [Erdös distance problem in vector spaces over finite fields, Trans. Amer. Math. Soc. 359 (2007) 6127–6142] on the analog of the Erdös–Falconer distance problem in the case of a finite field of characteristic [Formula: see text], where [Formula: see text] is an odd prime, without using estimates for Kloosterman sums. We also address the case of characteristic 2.


2011 ◽  
Vol 84 (1) ◽  
pp. 1-9
Author(s):  
LE ANH VINH

AbstractFor a prime powerq, let 𝔽qbe the finite field ofqelements. We show that 𝔽*q⊆d𝒜2for almost every subset 𝒜⊂𝔽qof cardinality ∣𝒜∣≫q1/d. Furthermore, ifq=pis a prime, and 𝒜⊆𝔽pof cardinality ∣𝒜∣≫p1/2(logp)1/d, thend𝒜2contains both large and small residues. We also obtain some results of this type for the Erdős distance problem over finite fields.


2017 ◽  
Vol 29 (2) ◽  
pp. 449-456 ◽  
Author(s):  
Nguyen D. Phuong ◽  
Pham Thang ◽  
Le A. Vinh

AbstractLet ${\mathbb{F}_{q}}$ be a finite field of q elements, where q is a large odd prime power and${Q=a_{1}x_{1}^{c_{1}}+\cdots+a_{d}x_{d}^{c_{d}}\in\mathbb{F}_{q}[x_{1},\ldots,% x_{d}]},$where ${2\leq c_{i}\leq N}$, ${\gcd(c_{i},q)=1}$, and ${a_{i}\in\mathbb{F}_{q}}$ for all ${1\leq i\leq d}$. A Q-sphere is a set of the form ${\bigl{\{}\boldsymbol{x}\in\mathbb{F}_{q}^{d}\mid Q(\boldsymbol{x}-\boldsymbol% {b})=r\bigr{\}}},$where ${\boldsymbol{b}\in\mathbb{F}_{q}^{d},r\in\mathbb{F}_{q}}$. We prove bounds on the number of incidences between a point set ${{{\mathcal{P}}}}$ and a Q-sphere set ${{{\mathcal{S}}}}$, denoted by ${I({{\mathcal{P}}},{{\mathcal{S}}})}$, as the following:$\Biggl{|}I({{\mathcal{P}}},{{\mathcal{S}}})-\frac{|{{\mathcal{P}}}||{{\mathcal% {S}}}|}{q}\Biggr{|}\leq q^{d/2}\sqrt{|{{\mathcal{P}}}||{{\mathcal{S}}}|}.$We also give a version of this estimate over finite cyclic rings ${\mathbb{Z}/q\mathbb{Z}}$, where q is an odd integer. As a consequence of the above bounds, we give an estimate for the pinned distance problem and a bound on the number of incidences between a random point set and a random Q-sphere set in ${\mathbb{F}_{q}^{d}}$. We also study the finite field analogues of some combinatorial geometry problems, namely, the number of generalized isosceles triangles, and the existence of a large subset without repeated generalized distances.


2006 ◽  
Vol 73 (2) ◽  
pp. 285-292 ◽  
Author(s):  
Igor E. Shparlinski

We use exponential sums to obtain new lower bounds on the number of distinct distances defined by all pairs of points (a, b) ∈ A × B for two given sets where is a finite field of q elements and n ≥ 1 is an integer.


2014 ◽  
Vol 51 (4) ◽  
pp. 454-465
Author(s):  
Lu-Ming Shen ◽  
Huiping Jing

Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q ((X^{ - 1} ))$$ \end{document} denote the formal field of all formal Laurent series x = Σ n=ν∞anX−n in an indeterminate X, with coefficients an lying in a given finite field \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{F}_q$$ \end{document}. For any \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\beta \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document} with deg β > 1, it is known that for almost all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$x \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document} (with respect to the Haar measure), x is β-normal. In this paper, we show the inverse direction, i.e., for any x, for almost all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\beta \in \mathbb{F}_q ((X^{ - 1} ))$$ \end{document}, x is β-normal.


Author(s):  
G. Suresh Singh ◽  
P. K. Prasobha

Let $K$ be any finite field. For any prime $p$, the $p$-adic valuation map is given by $\psi_{p}:K/\{0\} \to \R^+\bigcup\{0\}$ is given by $\psi_{p}(r) = n$ where $r = p^n \frac{a}{b}$, where $p,a,b$ are relatively prime. The field $K$ together with a valuation is called valued field. Also, any field $K$ has the trivial valuation determined by $\psi{(K)} = \{0,1\}$. Through out the paper K represents $\Z_q$. In this paper, we construct the graph corresponding to the valuation map called the valued field graph, denoted by $VFG_{p}(\Z_{q})$ whose vertex set is $\{v_0,v_1,v_2,\ldots, v_{q-1}\}$ where two vertices $v_i$ and $v_j$ are adjacent if $\psi_{p}(i) = j$ or $\psi_{p}(j) = i$. Here, we tried to characterize the valued field graph in $\Z_q$. Also we analyse various graph theoretical parameters such as diameter, independence number etc.


2010 ◽  
Vol 59 (10) ◽  
pp. 1392-1401 ◽  
Author(s):  
Xiaofeng Liao ◽  
Fei Chen ◽  
Kwok-wo Wong

2013 ◽  
Vol 28 (10) ◽  
pp. 1537-1547 ◽  
Author(s):  
J.B. Lima ◽  
E.A.O. Lima ◽  
F. Madeiro

Sign in / Sign up

Export Citation Format

Share Document