More on connected sums; Finite and abelian subgroups

3-Manifolds ◽  
2004 ◽  
pp. 77-89
2020 ◽  
Vol 54 (1) ◽  
pp. 64-67
Author(s):  
S. Yu. Orevkov
Keyword(s):  

Author(s):  
Dusa McDuff ◽  
Dietmar Salamon

This chapter examines various ways to construct symplectic manifolds and submanifolds. It begins by studying blowing up and down in both the complex and the symplectic contexts. The next section is devoted to a discussion of fibre connected sums and describes Gompf’s construction of symplectic four-manifolds with arbitrary fundamental group. The chapter also contains an exposition of Gromov’s telescope construction, which shows that for open manifolds the h-principle rules and the inclusion of the space of symplectic forms into the space of nondegenerate 2-forms is a homotopy equivalence. The final section outlines Donaldson’s construction of codimension two symplectic submanifolds and explains the associated decompositions of the ambient manifold.


Author(s):  
P. R. Jones

SynopsisThe class CS of completely simple semigroups forms a variety under the operations of multiplication and inversion (x−1 being the inverse of x in its ℋ-class). We determine a Rees matrix representation of the CS-free product of an arbitrary family of completely simple semigroups and deduce a description of the free completely simple semigroups, whose existence was proved by McAlister in 1968 and whose structure was first given by Clifford in 1979. From this a description of the lattice of varieties of completely simple semigroups is given in terms of certain subgroups of a free group of countable rank. Whilst not providing a “list” of identities on completely simple semigroups it does enable us to deduce, for instance, the description of all varieties of completely simple semigroups with abelian subgroups given by Rasin in 1979. It also enables us to describe the maximal subgroups of the “free” idempotent-generated completely simple semigroups T(α, β) denned by Eberhart et al. in 1973 and to show in general the maximal subgroups of the “V-free” semigroups of this type (which we define) need not be free in any variety of groups.


Author(s):  
Costantino Delizia ◽  
Chiara Nicotera

AbstractThe structure of locally soluble periodic groups in which every abelian subgroup is locally cyclic was described over 20 years ago. We complete the aforementioned characterization by dealing with the non-periodic case. We also describe the structure of locally finite groups in which all abelian subgroups are locally cyclic.


1956 ◽  
Vol 8 ◽  
pp. 256-262 ◽  
Author(s):  
J. De Groot

1. Introduction. We consider the group of proper orthogonal transformations (rotations) in three-dimensional Euclidean space, represented by real orthogonal matrices (aik) (i, k = 1,2,3) with determinant + 1 . It is known that this rotation group contains free (non-abelian) subgroups; in fact Hausdorff (5) showed how to find two rotations P and Q generating a group with only two non-trivial relationsP2 = Q3 = I.


Sign in / Sign up

Export Citation Format

Share Document