Correction to: “A real algebraic vector bundle is strongly algebraic whenever its total space is affine” [in Real algebraic geometry and topology (East Lansing, MI, 1993), 117–119, Contemp. Math., 182, Amer. Math. Soc., Providence, RI, 1995; MR1318734 (95m:14036)]

Author(s):  
J. Huisman
2003 ◽  
Vol 14 (07) ◽  
pp. 683-733 ◽  
Author(s):  
S. B. Bradlow ◽  
O. García-Prada ◽  
V. Muñoz ◽  
P. E. Newstead

Let X be a curve of genus g. A coherent system on X consists of a pair (E,V), where E is an algebraic vector bundle over X of rank n and degree d and V is a subspace of dimension k of the space of sections of E. The stability of the coherent system depends on a parameter α. We study the variation of the moduli space of coherent systems when we move the parameter. As an application, we analyze the cases k=1,2,3 and n=2 explicitly. For small values of α, the moduli spaces of coherent systems are related to the Brill–Noether loci, the subschemes of the moduli spaces of stable bundles consisting of those bundles with at least a prescribed number of independent sections. The study of coherent systems is applied to find the dimension, prove the irreducibility, and in some cases calculate the Picard groups of the Brill–Noether loci with k≤3.


1981 ◽  
Vol 90 (3) ◽  
pp. 395-402
Author(s):  
Samuel A. Ilori

AbstractLet i: Y ↪ X be an inclusion map of non-singular irreducible algebraic quasi-projective varieties defined over an algebraically closed field. Let E be an algebraic vector bundle over X and H be a sub-bundle of the induced bundle, i*E. If j:F(H) ↪ F(E) is the corresponding inclusion map of (incomplete) flag bundles, then we derive the normal bundle N(F(H), F(E)) in terms of the bundles H and E, the tangent bundles of Y and X as well as the tautological bundles over F(H).


2018 ◽  
Vol 2018 (745) ◽  
pp. 105-154 ◽  
Author(s):  
Wojciech Kucharz ◽  
Krzysztof Kurdyka

Abstract We investigate stratified-algebraic vector bundles on a real algebraic variety X. A stratification of X is a finite collection of pairwise disjoint, Zariski locally closed subvarieties whose union is X. A topological vector bundle ξ on X is called a stratified-algebraic vector bundle if, roughly speaking, there exists a stratification {\mathcal{S}} of X such that the restriction of ξ to each stratum S in {\mathcal{S}} is an algebraic vector bundle on S. In particular, every algebraic vector bundle on X is stratified-algebraic. It turns out that stratified-algebraic vector bundles have many surprising properties, which distinguish them from algebraic and topological vector bundles.


2017 ◽  
Vol 82 (1) ◽  
pp. 347-358 ◽  
Author(s):  
PABLO CUBIDES KOVACSICS ◽  
LUCK DARNIÈRE ◽  
EVA LEENKNEGT

AbstractThis paper addresses some questions about dimension theory for P-minimal structures. We show that, for any definable set A, the dimension of $\bar A\backslash A$ is strictly smaller than the dimension of A itself, and that A has a decomposition into definable, pure-dimensional components. This is then used to show that the intersection of finitely many definable dense subsets of A is still dense in A. As an application, we obtain that any definable function $f:D \subseteq {K^m} \to {K^n}$ is continuous on a dense, relatively open subset of its domain D, thereby answering a question that was originally posed by Haskell and Macpherson.In order to obtain these results, we show that P-minimal structures admit a type of cell decomposition, using a topological notion of cells inspired by real algebraic geometry.


2009 ◽  
Vol 52 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Jakob Cimprič

AbstractWe present a new approach to noncommutative real algebraic geometry based on the representation theory of C*-algebras. An important result in commutative real algebraic geometry is Jacobi's representation theorem for archimedean quadratic modules on commutative rings. We show that this theorem is a consequence of the Gelfand–Naimark representation theorem for commutative C*-algebras. A noncommutative version of Gelfand–Naimark theory was studied by I. Fujimoto. We use his results to generalize Jacobi's theorem to associative rings with involution.


Sign in / Sign up

Export Citation Format

Share Document