algebraic vector bundle
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2018 ◽  
Vol 2018 (745) ◽  
pp. 105-154 ◽  
Author(s):  
Wojciech Kucharz ◽  
Krzysztof Kurdyka

Abstract We investigate stratified-algebraic vector bundles on a real algebraic variety X. A stratification of X is a finite collection of pairwise disjoint, Zariski locally closed subvarieties whose union is X. A topological vector bundle ξ on X is called a stratified-algebraic vector bundle if, roughly speaking, there exists a stratification {\mathcal{S}} of X such that the restriction of ξ to each stratum S in {\mathcal{S}} is an algebraic vector bundle on S. In particular, every algebraic vector bundle on X is stratified-algebraic. It turns out that stratified-algebraic vector bundles have many surprising properties, which distinguish them from algebraic and topological vector bundles.



2003 ◽  
Vol 14 (07) ◽  
pp. 683-733 ◽  
Author(s):  
S. B. Bradlow ◽  
O. García-Prada ◽  
V. Muñoz ◽  
P. E. Newstead

Let X be a curve of genus g. A coherent system on X consists of a pair (E,V), where E is an algebraic vector bundle over X of rank n and degree d and V is a subspace of dimension k of the space of sections of E. The stability of the coherent system depends on a parameter α. We study the variation of the moduli space of coherent systems when we move the parameter. As an application, we analyze the cases k=1,2,3 and n=2 explicitly. For small values of α, the moduli spaces of coherent systems are related to the Brill–Noether loci, the subschemes of the moduli spaces of stable bundles consisting of those bundles with at least a prescribed number of independent sections. The study of coherent systems is applied to find the dimension, prove the irreducibility, and in some cases calculate the Picard groups of the Brill–Noether loci with k≤3.



1981 ◽  
Vol 90 (3) ◽  
pp. 395-402
Author(s):  
Samuel A. Ilori

AbstractLet i: Y ↪ X be an inclusion map of non-singular irreducible algebraic quasi-projective varieties defined over an algebraically closed field. Let E be an algebraic vector bundle over X and H be a sub-bundle of the induced bundle, i*E. If j:F(H) ↪ F(E) is the corresponding inclusion map of (incomplete) flag bundles, then we derive the normal bundle N(F(H), F(E)) in terms of the bundles H and E, the tangent bundles of Y and X as well as the tautological bundles over F(H).



Sign in / Sign up

Export Citation Format

Share Document