KKR type bijection for the exceptional affine algebra 𝐸₆⁽¹⁾

Author(s):  
Masato Okado ◽  
Nobumasa Sano
Keyword(s):  
1992 ◽  
Vol 07 (11) ◽  
pp. 2469-2485
Author(s):  
A. C. CADAVID ◽  
R. J. FINKELSTEIN

An affine field theory may be constructed by gauging an affine algebra. The momentum integrals of the affine N = 4 Yang–Mills theory are ultraviolet finite but diverge because the sum over states is infinite. If the affine symmetry is broken by postulating a nonvanishing vacuum expectation value for that component of the scalar field lying in the L0 direction, then the theory acquires a linear mass spectrum. This broken theory is ultraviolet finite too, but the mass spectrum is unbounded. If it is also postulated that the mass spectrum has an upper bound (say, the Planck mass), then the resulting theory appears to be altogether finite. The influence of the exotic states has been estimated and, according to the proposed scenario, is negligible below energies at which gravitational interactions become important. The final effective theory has the symmetry of a compact Lie algebra augmented by the operator L0.


1994 ◽  
Vol 09 (14) ◽  
pp. 1253-1265 ◽  
Author(s):  
HITOSHI KONNO

Using free field representation of quantum affine algebra [Formula: see text], we investigate the structure of the Fock modules over [Formula: see text]. The analysis is based on a q-analog of the BRST formalism given by Bernard and Felder in the affine Kac-Moody algebra [Formula: see text]. We give an explicit construction of the singular vectors using the BRST charge. By the same cohomology analysis as the classical case (q=1), we obtain the irreducible highest weight representation space as a non-trivial cohomology group. This enables us to calculate a trace of the q-vertex operators over this space.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Atsuo Kuniba ◽  
Masato Okado

Abstract A trick to obtain a solution to the set-theoretical reflection equation from a known one to the Yang–Baxter equation is applied to crystals and geometric crystals associated to the quantum affine algebra of type $A^{(1)}_{n-1}$.


Sign in / Sign up

Export Citation Format

Share Document