linear mass
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 28)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 162 (6) ◽  
pp. 239
Author(s):  
Xiaolian Liang ◽  
Jin-Long Xu ◽  
Jun-Jie Wang

Abstract We present multiwavelength data to investigate the physical properties and fragmentation of AFGL 333-Ridge. A statistical analysis of velocity dispersion indicates that turbulence is the dominant motion in the ridge. However, the linear mass density (1124.0 M ⊙/pc) of AFGL 333-Ridge far exceeds its critical value of 406.5 M ⊙/pc, suggesting that additional motions are required to prevent the filament radial collapse. Using the getsources algorithm, we identified 14 cores from the Herschel maps, including two protostellar cores and 12 starless cores. All of these starless cores are gravitationally bound, and are therefore considered to be prestellar cores. Based on their radius-mass relation, 11 of 14 cores have the potential to form massive stars. Moreover, the seven cores in two subfilaments of AFGL 333-Ridge seem to constitute two necklace-like chains with a spacing length of 0.51 and 0.45 pc, respectively. Compared the spacing length with theoretical prediction lengths by Jeans and cylindrical fragmentations, we argued that the combination of turbulence and thermal pressure may lead to the fragmentation of the two subfilaments into the cores.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012030
Author(s):  
D L Shmelev ◽  
S A Chaikovsky ◽  
I V Uimanov

Abstract This paper discusses the issues of a possible change of the type of cathode attachment of high-current vacuum arcs (HCVA) with an average cathode current density of more than 105 A/cm2. This type of HCVA is used as pumping plasma gun in experiments with plasma puff z-pinches. These experiments showed that the measured linear mass of the HCVA plasma jet is much higher (by a factor of 10 or more) than the expected mass, which can be obtained from the assumption that cathode attachment occurs only through a multitude of cathode spots emitting supersonic plasma jets. It is shown that in HCVA of the type under consideration, at some time instant there are two types of cathode attachments - cathode spots and thermionic erosion attachment (TEA). It can be said that HCVA of this type have a hybrid cathodic attachment. Unlike cathode spots, TEA produces a subsonic plasma flow, which contributes to an increase in the linear mass of the HCVA plasma jet.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3564
Author(s):  
Weronika Gieparda ◽  
Szymon Rojewski ◽  
Wanda Różańska

The study investigated the effectiveness of the combination of chemical and physical methods of natural fibers’ modification. The long flax fibers were subjected to various types of modification. These were silanization, plasma modification and a combination of these methods. For the silanization process, two types of silanes were used: amino- and vinylsilane. The application of structurally different compounds allowed us to acquire knowledge about the effect of the modifier structure on its properties. Various properties of flax fibers were investigated, comparing the results before and after different modification processes. The flammability of prepared samples were tested by pyrolysis combustion flow calorimeter (PCFC). In the effect of the natural fibers’ modifications, flammability was reduced even by 30%. The thermal stability of modified fibers increased. The FTIR tests of the gases released during thermal degradation of the tested fibers allowed us to determine the important compounds and prove a lower degree of flax-fiber decomposition after modification. Flax fibers were also tested to evaluate their physical properties (linear mass, average diameter, aspect ratio and hygroscopicity). Changes in surface morphology were observed by scanning electron microscope (SEM). The properties of natural fibers improved significantly, thus contributing to an increase in their suitability for the use in composites.


2021 ◽  
Vol 9 (4) ◽  
pp. 679-687
Author(s):  
Hagai Amakobe James ◽  

A beam is a structural element or member designed to support loads applied at various points along the element. Beams make up a structure which is an assembly of a number of elements. Beams undergo displacement such as deflection and rotations at certain important location of a structure such as centre of a bridge or top of a building. I haveanalysed numerically a two dimensional beam equation with one degree of freedom of the form using finite element method. The positive constant has the meaning of flexural rigidity per linear mass density, the beam deflection and is the external forcing term. This involved discretization of the beam equation employing Galerkins technique which yields a system of ordinary differential equations.


Author(s):  
Anke S. Ulrich ◽  
Uwe Glatzel ◽  
Mathias C. Galetz

AbstractSome alloys such as many Cr-based systems show mass gain discontinuities during thermogravimetric measurements which strongly affect the oxidation kinetics. The behaviour cannot be described by the current models available in the literature. Thus, a novel $$k_\mathrm{para}$$ k para –$$k_\mathrm{lin}$$ k lin -P-model was developed to describe oxidation kinetics during the isothermal exposure of materials which show such behaviour. Beside the parabolic rate constant $$k_\mathrm{para}$$ k para and the linear mass loss constant $$k_\mathrm{lin}$$ k lin , the P-value and $$f_P$$ f P are introduced to take into account spontaneous rapid mass gains due to local oxide scale failure. The parameter P serves as a measure for the mass gain due to discontinuous events and $$f_P$$ f P is the frequency of such events. The both parameters can be related to oxide scale detachment and growth stresses. The application of the model is demonstrated for the oxidation of Cr–Si-based alloys in synthetic air at $$1200^{\circ }\hbox {C}$$ 1200 ∘ C for 100 h. For these alloys, the origin of the mass gain discontinuities is discussed and the meaning of P and $$f_P$$ f P is explained in more detail. Using this newly developed model, an insight into growth and nitridation resistance of oxide scales as well as scale adhesion is gained.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 472
Author(s):  
Stéphane Roulon ◽  
Ian Soulairol ◽  
Valérie Lavastre ◽  
Nicolas Payre ◽  
Maxime Cazes ◽  
...  

Patients need medications at a dosage suited to their physiological characteristics. Three-dimensional printing (3DP) technology by fused-filament fabrication (FFF) is a solution for manufacturing medication on demand. The aim of this work was to identify important parameters for the production of reproducible filament batches used by 3DP for oral formulations. Amiodarone hydrochloride, an antiarrhythmic and insoluble drug, was chosen as a model drug because of dosage adaptation need in children. Polyethylene oxide (PEO) filaments containing amiodarone hydrochloride were produced by hot-melt extrusion (HME). Different formulation storage conditions were investigated. For all formulations, the physical form of the drug following HME and fused-deposition modeling (FDM) 3D-printing processes were assessed using thermal analysis and X-ray powder diffraction (XRPD). Filament mechanical properties, linear mass density and surface roughness, were investigated by, respectively, 3-point bending, weighing, and scanning electron microscopy (SEM). Analysis results showed that the formulation storage condition before HME-modified filament linear mass density and, therefore, the oral forms masses from a batch to another. To obtain constant filament apparent density, it has been shown that a constant and reproducible drying condition is required to produce oral forms with constant mass.


Sign in / Sign up

Export Citation Format

Share Document