scholarly journals Uniformization of simply connected finite type Log-Riemann surfaces

Author(s):  
Kingshook Biswas ◽  
Ricardo Perez-Marco
Author(s):  
Eric Schippers ◽  
Mohammad Shirazi ◽  
Wolfgang Staubach

Abstract We consider a compact Riemann surface R of arbitrary genus, with a finite number of non-overlapping quasicircles, which separate R into two subsets: a connected Riemann surface $$\Sigma $$ Σ , and the union $$\mathcal {O}$$ O of a finite collection of simply connected regions. We prove that the Schiffer integral operator mapping the Bergman space of anti-holomorphic one-forms on $$\mathcal {O}$$ O to the Bergman space of holomorphic forms on $$\Sigma $$ Σ is an isomorphism onto the exact one-forms, when restricted to the orthogonal complement of the set of forms on all of R. We then apply this to prove versions of the Plemelj–Sokhotski isomorphism and jump decomposition for such a configuration. Finally we obtain some approximation theorems for the Bergman space of one-forms and Dirichlet space of holomorphic functions on $$\Sigma $$ Σ by elements of Bergman space and Dirichlet space on fixed regions in R containing $$\Sigma $$ Σ .


1955 ◽  
Vol 9 ◽  
pp. 17-20 ◽  
Author(s):  
Maurice Heins

It is well-known that the conformal equivalence of a compact simply-connected Riemann surface to the extended plane is readily established once it is shown that given a local uniformizer t(p) which carries a given point p0 of the surface into 0, there exists a function u harmonic on the surface save at p0 which admits near p0 a representation of the form(α complex 0; h harmonic at p0). For the monodromy theorem then implies the existence of a meromorphic function on the surface whose real part is u. Such a meromorphic function has a simple pole at p0 and elsewhere is analytic. It defines a univalent conformal map of the surface onto the extended plane.


1997 ◽  
Vol 39 (1) ◽  
pp. 65-76
Author(s):  
Pablo Arés Gastesi

The deformation theory of nonorientable surfaces deals with the problem of studying parameter spaces for the different dianalytic structures that a surface can have. It is an extension of the classical theory of Teichmüller spaces of Riemann surfaces, and as such, it is quite rich. In this paper we study some basic properties of the Teichmüller spaces of non-orientable surfaces, whose parallels in the orientable situation are well known. More precisely, we prove an uniformization theorem, similar to the case of Riemann surfaces, which shows that a non-orientable compact surface can be represented as the quotient of a simply connected domain of the Riemann sphere, by a discrete group of Möbius and anti-Möbius transformation (mappings whose conjugates are Mobius transformations). This uniformization result allows us to give explicit examples of Teichmüller spaces of non-orientable surfaces, as subsets of deformation spaces of orientable surfaces. We also prove two isomorphism theorems: in the first place, we show that the Teichmüller spaces of surfaces of different topological type are not, in general, equivalent. We then show that, if the topological type is preserved, but the signature changes, then the deformations spaces are isomorphic. These are generalizations of the Patterson and Bers-Greenberg theorems for Teichmüller spaces of Riemann surfaces, respectively.


Author(s):  
S. Nag ◽  
J. A. Hillman ◽  
B. Datta

AbstractWe have defined and studied some pseudogroups of local diffeomorphisms which generalise the complex analytic pseudogroups. A 4-dimensional (or 8-dimensional) manifold modelled on these ‘Further pseudogroups’ turns out to be a quaternionic (respectively octonionic) manifold.We characterise compact Further manifolds as being products of compact Riemann surfaces with appropriate dimensional spheres. It then transpires that a connected compact quaternionic (H) (respectively O) manifold X, minus a finite number of circles (its ‘real set’), is the orientation double covering of the product Y × P2, (respectively Y×P6), where Y is a connected surface equipped with a canonical conformal structure and Pn is n-dimensonal real projective space.A corollary is that the only simply-connected compact manifolds which can allow H (respectively O) structure are S4 and S2 × S2 (respectively S8 and S2×S6).Previous authors, for example Marchiafava and Salamon, have studied very closely-related classes of manifolds by differential geometric methods. Our techniques in this paper are function theoretic and topological.


1957 ◽  
Vol 12 ◽  
pp. 139-143
Author(s):  
Maurice Heins

On reviewing recently the proof which I gave for the Riemann mapping theorem for simply-connected Riemann surfaces several years ago [2], I observed that the argument which I used could be so modified that the assumption of a countable base could be completely eliminated. The problem of treating the Riemann mapping theorem without this assumption has been current for some time. The object of the present note is to give an account of a solution of this question. Of course, the classical theorem of Radó permits us to dispense with an attack on the Riemann mapping theorem which does not appeal to the countable base assumption. In this connection, we recall that Nevanlinna [4] has given a straightforward potential-theoretic treatment of the Radó theorem in which neither the Riemann mapping theorem (nor the notion of a universal covering) enters as they do in Radó’s proof. Nevertheless, a certain technical interest attaches to a direct treatment of the Riemann mapping theorem without the countable base assumption. An immediate byproduct of such a treatment is a simple proof of the Radó theorem which invokes the notion of a universal covering but in a manner different from that of Radó’s proof. Indeed, it suffices to note that a manifold has a countable base if the domain of a universal covering does.


1998 ◽  
Vol 18 (4) ◽  
pp. 1019-1042 ◽  
Author(s):  
CLAYTON C. WARD

We define, following Veech, the Fuchsian group $\Gamma(P)$ of a rational polygon $P$. If $P$ is simply-connected, then ‘rational’ is equivalent to the condition that all interior angles of $P$ be rational multiples of $\pi$. Should it happen that $\Gamma(P)$ has finite covolume in $\mathop{\rm PSL}\nolimits (2, {\Bbb R})$ (and is thus a {\it lattice}), then a theorem of Veech states that every billiard path in $P$ is either finite or uniformly distributed in $P$.We consider the Fuchsian groups of various rational triangles. First, we calculate explicitly the Fuchsian groups of a new sequence of triangles, and discover they are lattices. Interestingly, the lattices found are not commensurable with those previously known. We then demonstrate a class of triangles whose Fuchsian groups are {\it not\/} lattices. These are the first examples of such triangles. Finally, we end by showing how one may specify algebraically, i.e. by an explicit polynomial in two variables, the Riemann surfaces and holomorphic one-forms that are associated to a simply-connected rational polygon. Previously, these surfaces were known by their geometric description. As an example, we show a connection between the billiard in a regular polygon and the well-known Fermat curves of the algebraic equation $x^n + y^n = 1$.


Sign in / Sign up

Export Citation Format

Share Document