scholarly journals Model structures and relative Gorenstein flat modules and chain complexes

Author(s):  
Sergio Estrada ◽  
Alina Iacob ◽  
Marco Pérez
Author(s):  
Wenjing Chen ◽  
Zhongkui Liu

In this paper, we construct some model structures corresponding Gorenstein [Formula: see text]-modules and relative Gorenstein flat modules associated to duality pairs, Frobenius pairs and cotorsion pairs. By investigating homological properties of Gorenstein [Formula: see text]-modules and some known complete hereditary cotorsion pairs, we describe several types of complexes and obtain some characterizations of Iwanaga–Gorenstein rings. Based on some facts given in this paper, we find new duality pairs and show that [Formula: see text] is covering as well as enveloping and [Formula: see text] is preenveloping under certain conditions, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-injective modules and [Formula: see text] denotes the class of Gorenstein [Formula: see text]-flat modules. We give some recollements via projective cotorsion pair [Formula: see text] cogenerated by a set, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-projective modules. Also, many recollements are immediately displayed through setting specific complete duality pairs.


2010 ◽  
Vol 53 (3) ◽  
pp. 675-696 ◽  
Author(s):  
James Gillespie ◽  
Mark Hovey

AbstractIn a paper from 2002, Hovey introduced the Gorenstein projective and Gorenstein injective model structures on R-Mod, the category of R-modules, where R is any Gorenstein ring. These two model structures are Quillen equivalent and in fact there is a third equivalent structure we introduce: the Gorenstein flat model structure. The homotopy category with respect to each of these is called the stable module category of R. If such a ring R has finite global dimension, the graded ring R[x]/(x2) is Gorenstein and the three associated Gorenstein model structures on R[x]/(x2)-Mod, the category of graded R[x]/(x2)-modules, are nothing more than the usual projective, injective and flat model structures on Ch(R), the category of chain complexes of R-modules. Although these correspondences only recover these model structures on Ch(R) when R has finite global dimension, we can set R = ℤ and use general techniques from model category theory to lift the projective model structure from Ch(ℤ) to Ch(R) for an arbitrary ring R. This shows that homological algebra is a special case of Gorenstein homological algebra. Moreover, this method of constructing and lifting model structures carries through when ℤ[x]/(x2) is replaced by many other graded Gorenstein rings (or Hopf algebras, which lead to monoidal model structures). This gives us a natural way to generalize both chain complexes over a ring R and the derived category of R and we give some examples of such generalizations.


2018 ◽  
Vol 17 (01) ◽  
pp. 1850014 ◽  
Author(s):  
Jian Wang ◽  
Yunxia Li ◽  
Jiangsheng Hu

In this paper, we introduce and study left (right) [Formula: see text]-semihereditary rings over any associative ring, and these rings are exactly [Formula: see text]-semihereditary rings defined by Mahdou and Tamekkante provided that [Formula: see text] is a commutative ring. Some new characterizations of left [Formula: see text]-semihereditary rings are given. Applications go in three directions. The first is to give a sufficient condition when a finitely presented right [Formula: see text]-module is Gorenstein flat if and only if it is Gorenstein projective provided that [Formula: see text] is left coherent. The second is to investigate the relationships between Gorenstein flat modules and direct limits of finitely presented Gorenstein projective modules. The third is to obtain some new characterizations of semihereditary rings, [Formula: see text]-[Formula: see text] rings and [Formula: see text] rings.


Author(s):  
Aimin Xu

Let [Formula: see text] be either the category of [Formula: see text]-modules or the category of chain complexes of [Formula: see text]-modules and [Formula: see text] a cofibrantly generated hereditary abelian model structure on [Formula: see text]. First, we get a new cofibrantly generated model structure on [Formula: see text] related to [Formula: see text] for any positive integer [Formula: see text], and hence, one can get new algebraic triangulated categories. Second, it is shown that any [Formula: see text]-strongly Gorenstein projective module gives rise to a projective cotorsion pair cogenerated by a set. Finally, let [Formula: see text] be an [Formula: see text]-module with finite flat dimension and [Formula: see text] a positive integer, if [Formula: see text] is an exact sequence of [Formula: see text]-modules with every [Formula: see text] Gorenstein injective, then [Formula: see text] is injective.


2018 ◽  
Vol 45 (2) ◽  
pp. 337-344
Author(s):  
Yanjiong Yang ◽  
Xiaoguang Yan
Keyword(s):  

Author(s):  
Zenghui Gao ◽  
Wan Wu

Let [Formula: see text] be an injectively resolving subcategory of left [Formula: see text]-modules. We introduce and study [Formula: see text]-Gorenstein flat modules as a common generalization of some known modules such as Gorenstein flat modules (Enochs, Jenda and Torrecillas, 1993), Gorenstein AC-flat modules (Bravo, Estrada and Iacob, 2018). Then we define a resolution dimension relative to the [Formula: see text]-Gorensteinflat modules, investigate the properties of the homological dimension and unify some important properties possessed by some known homological dimensions. In addition, stability of the category of [Formula: see text]-Gorensteinflat modules is discussed, and some known results are obtained as applications.


2016 ◽  
Vol 46 (5) ◽  
pp. 1739-1753 ◽  
Author(s):  
Guoqiang Zhao ◽  
Xiaoguang Yan
Keyword(s):  

2009 ◽  
Vol 14 (3) ◽  
pp. 403-428 ◽  
Author(s):  
Sean Sather-Wagstaff ◽  
Tirdad Sharif ◽  
Diana White

2020 ◽  
Vol 27 (03) ◽  
pp. 575-586
Author(s):  
Sergio Estrada ◽  
Alina Iacob ◽  
Holly Zolt

For a given class of modules [Formula: see text], let [Formula: see text] be the class of exact complexes having all cycles in [Formula: see text], and dw([Formula: see text]) the class of complexes with all components in [Formula: see text]. Denote by [Formula: see text][Formula: see text] the class of Gorenstein injective R-modules. We prove that the following are equivalent over any ring R: every exact complex of injective modules is totally acyclic; every exact complex of Gorenstein injective modules is in [Formula: see text]; every complex in dw([Formula: see text][Formula: see text]) is dg-Gorenstein injective. The analogous result for complexes of flat and Gorenstein flat modules also holds over arbitrary rings. If the ring is n-perfect for some integer n ≥ 0, the three equivalent statements for flat and Gorenstein flat modules are equivalent with their counterparts for projective and projectively coresolved Gorenstein flat modules. We also prove the following characterization of Gorenstein rings. Let R be a commutative coherent ring; then the following are equivalent: (1) every exact complex of FP-injective modules has all its cycles Ding injective modules; (2) every exact complex of flat modules is F-totally acyclic, and every R-module M such that M+ is Gorenstein flat is Ding injective; (3) every exact complex of injectives has all its cycles Ding injective modules and every R-module M such that M+ is Gorenstein flat is Ding injective. If R has finite Krull dimension, statements (1)–(3) are equivalent to (4) R is a Gorenstein ring (in the sense of Iwanaga).


2015 ◽  
Vol 22 (02) ◽  
pp. 259-270
Author(s):  
Li Liang ◽  
Chunhua Yang

In this paper, we introduce and study G C-flat complexes over a commutative Noetherian ring, where C is a semidualizing module. We prove that G C-flat complexes are actually the complexes of G C-flat modules. This complements a result of Yang and Liang. As an application, we get that every complex has a [Formula: see text]-cover, where [Formula: see text] is the class of G C-flat complexes. We also give a characterization of complexes of modules in [Formula: see text] that are defined by Sather-Wagstaff, Sharif and White.


Sign in / Sign up

Export Citation Format

Share Document