Model structures, recollements and duality pairs

Author(s):  
Wenjing Chen ◽  
Zhongkui Liu

In this paper, we construct some model structures corresponding Gorenstein [Formula: see text]-modules and relative Gorenstein flat modules associated to duality pairs, Frobenius pairs and cotorsion pairs. By investigating homological properties of Gorenstein [Formula: see text]-modules and some known complete hereditary cotorsion pairs, we describe several types of complexes and obtain some characterizations of Iwanaga–Gorenstein rings. Based on some facts given in this paper, we find new duality pairs and show that [Formula: see text] is covering as well as enveloping and [Formula: see text] is preenveloping under certain conditions, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-injective modules and [Formula: see text] denotes the class of Gorenstein [Formula: see text]-flat modules. We give some recollements via projective cotorsion pair [Formula: see text] cogenerated by a set, where [Formula: see text] denotes the class of Gorenstein [Formula: see text]-projective modules. Also, many recollements are immediately displayed through setting specific complete duality pairs.

2020 ◽  
Vol 27 (03) ◽  
pp. 575-586
Author(s):  
Sergio Estrada ◽  
Alina Iacob ◽  
Holly Zolt

For a given class of modules [Formula: see text], let [Formula: see text] be the class of exact complexes having all cycles in [Formula: see text], and dw([Formula: see text]) the class of complexes with all components in [Formula: see text]. Denote by [Formula: see text][Formula: see text] the class of Gorenstein injective R-modules. We prove that the following are equivalent over any ring R: every exact complex of injective modules is totally acyclic; every exact complex of Gorenstein injective modules is in [Formula: see text]; every complex in dw([Formula: see text][Formula: see text]) is dg-Gorenstein injective. The analogous result for complexes of flat and Gorenstein flat modules also holds over arbitrary rings. If the ring is n-perfect for some integer n ≥ 0, the three equivalent statements for flat and Gorenstein flat modules are equivalent with their counterparts for projective and projectively coresolved Gorenstein flat modules. We also prove the following characterization of Gorenstein rings. Let R be a commutative coherent ring; then the following are equivalent: (1) every exact complex of FP-injective modules has all its cycles Ding injective modules; (2) every exact complex of flat modules is F-totally acyclic, and every R-module M such that M+ is Gorenstein flat is Ding injective; (3) every exact complex of injectives has all its cycles Ding injective modules and every R-module M such that M+ is Gorenstein flat is Ding injective. If R has finite Krull dimension, statements (1)–(3) are equivalent to (4) R is a Gorenstein ring (in the sense of Iwanaga).


2018 ◽  
Vol 17 (01) ◽  
pp. 1850014 ◽  
Author(s):  
Jian Wang ◽  
Yunxia Li ◽  
Jiangsheng Hu

In this paper, we introduce and study left (right) [Formula: see text]-semihereditary rings over any associative ring, and these rings are exactly [Formula: see text]-semihereditary rings defined by Mahdou and Tamekkante provided that [Formula: see text] is a commutative ring. Some new characterizations of left [Formula: see text]-semihereditary rings are given. Applications go in three directions. The first is to give a sufficient condition when a finitely presented right [Formula: see text]-module is Gorenstein flat if and only if it is Gorenstein projective provided that [Formula: see text] is left coherent. The second is to investigate the relationships between Gorenstein flat modules and direct limits of finitely presented Gorenstein projective modules. The third is to obtain some new characterizations of semihereditary rings, [Formula: see text]-[Formula: see text] rings and [Formula: see text] rings.


Author(s):  
Aimin Xu

Let [Formula: see text] be either the category of [Formula: see text]-modules or the category of chain complexes of [Formula: see text]-modules and [Formula: see text] a cofibrantly generated hereditary abelian model structure on [Formula: see text]. First, we get a new cofibrantly generated model structure on [Formula: see text] related to [Formula: see text] for any positive integer [Formula: see text], and hence, one can get new algebraic triangulated categories. Second, it is shown that any [Formula: see text]-strongly Gorenstein projective module gives rise to a projective cotorsion pair cogenerated by a set. Finally, let [Formula: see text] be an [Formula: see text]-module with finite flat dimension and [Formula: see text] a positive integer, if [Formula: see text] is an exact sequence of [Formula: see text]-modules with every [Formula: see text] Gorenstein injective, then [Formula: see text] is injective.


2011 ◽  
Vol 54 (3) ◽  
pp. 783-797 ◽  
Author(s):  
Gang Yang ◽  
Zhongkui Liu

AbstractWe show that if the given cotorsion pair $(\mathcal{A},\mathcal{B})$ in the category of modules is complete and hereditary, then both of the induced cotorsion pairs in the category of complexes are complete. We also give a cofibrantly generated model structure that can be regarded as a generalization of the projective model structure.


2017 ◽  
Vol 24 (04) ◽  
pp. 577-602 ◽  
Author(s):  
Xiaoyan Yang ◽  
Tianya Cao

Given a cotorsion pair ([Formula: see text], [Formula: see text]) in an abelian category [Formula: see text] , we define cotorsion pairs ([Formula: see text], dg[Formula: see text]) and (dg[Formula: see text], [Formula: see text]) in the category [Formula: see text]N([Formula: see text]) of N-complexes on [Formula: see text]. We prove that if the cotorsion pair ([Formula: see text], [Formula: see text]) is complete and hereditary in a bicomplete abelian category, then both of the induced cotorsion pairs are complete, compatible and hereditary. We also create complete cotorsion pairs (dw[Formula: see text], (dw[Formula: see text])⊥), (ex[Formula: see text], (ex[Formula: see text])⊥) and (⊥(dw[Formula: see text]), dw[Formula: see text]), (⊥(ex[Formula: see text]); ex[Formula: see text]) in a termwise manner by starting with a cotorsion pair ([Formula: see text], [Formula: see text]) that is cogenerated by a set. As applications of these results, we obtain more abelian model structures from the cotorsion pairs.


2017 ◽  
Vol 59 (3) ◽  
pp. 685-703 ◽  
Author(s):  
AIMIN XU

AbstractGiven a complete hereditary cotorsion pair$(\mathcal{X}, \mathcal{Y})$, we introduce the concept of$(\mathcal{X}, \mathcal{X} \cap \mathcal{Y})$-Gorenstein projective modules and study its stability properties. As applications, we first get two model structures related to Gorenstein flat modules over a right coherent ring. Secondly, for any non-negative integern, we construct a cofibrantly generated model structure on Mod(R) in which the class of fibrant objects are the modules of Gorenstein injective dimension ≤nover a left Noetherian ringR. Similarly, ifRis a left coherent ring in which all flat leftR-modules have finite projective dimension, then there is a cofibrantly generated model structure on Mod(R) such that the cofibrant objects are the modules of Gorenstein projective dimension ≤n. These structures have their analogous in the category of chain complexes.


2009 ◽  
Vol 86 (3) ◽  
pp. 323-338 ◽  
Author(s):  
NANQING DING ◽  
YUANLIN LI ◽  
LIXIN MAO

AbstractIn this paper, strongly Gorenstein flat modules are introduced and investigated. An R-module M is called strongly Gorenstein flat if there is an exact sequence ⋯→P1→P0→P0→P1→⋯ of projective R-modules with M=ker (P0→P1) such that Hom(−,F) leaves the sequence exact whenever F is a flat R-module. Several well-known classes of rings are characterized in terms of strongly Gorenstein flat modules. Some examples are given to show that strongly Gorenstein flat modules over coherent rings lie strictly between projective modules and Gorenstein flat modules. The strongly Gorenstein flat dimension and the existence of strongly Gorenstein flat precovers and pre-envelopes are also studied.


2019 ◽  
Vol 47 (12) ◽  
pp. 4989-5006
Author(s):  
Zhanping Wang ◽  
Gang Yang ◽  
Rongmin Zhu

2008 ◽  
Vol 07 (04) ◽  
pp. 491-506 ◽  
Author(s):  
LIXIN MAO ◽  
NANQING DING

In this paper, Gorenstein FP-injective modules are introduced and studied. An R-module M is called Gorenstein FP-injective if there is an exact sequence ⋯ → E1 → E0 → E0 → E1 → ⋯ of injective R-modules with M = ker (E0 → E1) and such that Hom (E, -) leaves the sequence exact whenever E is an FP-injective R-module. Some properties of Gorenstein FP-injective and Gorenstein flat modules over coherent rings are obtained. Several known results are extended.


Sign in / Sign up

Export Citation Format

Share Document