Periodic homogenization theory for Hamilton–Jacobi equations

2021 ◽  
pp. 109-162
2021 ◽  
Vol 121 (2) ◽  
pp. 171-194
Author(s):  
Son N.T. Tu

Let u ε and u be viscosity solutions of the oscillatory Hamilton–Jacobi equation and its corresponding effective equation. Given bounded, Lipschitz initial data, we present a simple proof to obtain the optimal rate of convergence O ( ε ) of u ε → u as ε → 0 + for a large class of convex Hamiltonians H ( x , y , p ) in one dimension. This class includes the Hamiltonians from classical mechanics with separable potential. The proof makes use of optimal control theory and a quantitative version of the ergodic theorem for periodic functions in dimension n = 1.


2019 ◽  
Vol 9 (1) ◽  
pp. 292-304 ◽  
Author(s):  
Renata Bunoiu ◽  
Radu Precup

Abstract We propose a method for the localization of solutions for a class of nonlinear problems arising in the homogenization theory. The method combines concepts and results from the linear theory of PDEs, linear periodic homogenization theory, and nonlinear functional analysis. Particularly, we use the Moser-Harnack inequality, arguments of fixed point theory and Ekeland's variational principle. A significant gain in the homogenization theory of nonlinear problems is that our method makes possible the emergence of finitely or infinitely many solutions.


2019 ◽  
Vol 150 (6) ◽  
pp. 3028-3059
Author(s):  
Martino Bardi ◽  
Annalisa Cesaroni ◽  
Erwin Topp

AbstractThis paper deals with the periodic homogenization of nonlocal parabolic Hamilton–Jacobi equations with superlinear growth in the gradient terms. We show that the problem presents different features depending on the order of the nonlocal operator, giving rise to three different cell problems and effective operators. To prove the locally uniform convergence to the unique solution of the Cauchy problem for the effective equation we need a new comparison principle among viscosity semi-solutions of integrodifferential equations that can be of independent interest.


Sign in / Sign up

Export Citation Format

Share Document