Simulation by periodic homogenization of the behavior of a polycrystalline material in large elastoplastic transformations

2003 ◽  
Vol 105 ◽  
pp. 123-130 ◽  
Author(s):  
S. Elbououni ◽  
S. Bourgeois ◽  
O. Débordes ◽  
A. Dogui
Author(s):  
Kin Lam

The energy of moving ions in solid is dependent on the electronic density as well as the atomic structural properties of the target material. These factors contribute to the observable effects in polycrystalline material using the scanning ion microscope. Here we outline a method to investigate the dependence of low velocity proton stopping on interatomic distances and orientations.The interaction of charged particles with atoms in the frame work of the Fermi gas model was proposed by Lindhard. For a system of atoms, the electronic Lindhard stopping power can be generalized to the formwhere the stopping power function is defined as


Author(s):  
C. H. Carter ◽  
J. E. Lane ◽  
J. Bentley ◽  
R. F. Davis

Silicon carbide (SiC) is the generic name for a material which is produced and fabricated by a number of processing routes. One of the three SiC materials investigated at NCSU is Norton Company's NC-430, which is produced by reaction-bonding of Si vapor with a porous SiC host which also contains free C. The Si combines with the free C to form additional SiC and a second phase of free Si. Chemical vapor deposition (CVD) of CH3SiCI3 onto a graphite substrate was employed to produce the second SiC investigated. This process yielded a theoretically dense polycrystalline material with highly oriented grains. The third SiC was a pressureless sintered material (SOHIO Hexoloy) which contains B and excess C as sintering additives. These materials are candidates for applications such as components for gas turbine, adiabatic diesel and sterling engines, recouperators and heat exchangers.


PAMM ◽  
2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Daniel Peterseim ◽  
Dora Varga

2005 ◽  
Vol 13 (4) ◽  
pp. 261-265
Author(s):  
G. D. Bokuchava ◽  
H. G. Priesmeyer ◽  
V. A. Kudryashov ◽  
U. Tietze

1996 ◽  
Vol 46 (1) ◽  
pp. 100-102 ◽  
Author(s):  
Shi-fu Zhu ◽  
Bei-jun Zhao ◽  
Jun Liu ◽  
Hon-gan Jiang ◽  
Zheng-hui Li ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C995-C995
Author(s):  
Duane Choquesillo-Lazarte ◽  
Cristóbal Verdugo-Escamilla ◽  
Juan Manuel García-Ruiz

The interest in multicomponent solid forms has increased in the last years within the pharmaceutical industry and also the solid-state community due to the possibility of obtaining materials with new properties [1]. Crystallization strategies, supported by solvent- and solid-based techniques, have also received attention in the search and development of methodologies for the screening of multicomponent crystals. In this work, ethenzamide, an anti-inflammatory and analgesic drug, was selected as a model drug to develop cocrystals on the basis of the synthon types using a series of phenolic coformers. Ethenzamide cocrystals and cocrystal solvates have been reported recently [2,3]. Liquid Assisted Grinding (LAG) and solution methods were used as synthetic tools. Attempts to produce cocrystals by LAG and Reaction Crystallization led to the formation of polycrystalline material. The solids obtained were then characterized by powder X-ray diffraction (PXRD), FT-IR and Raman spectroscopy. Recrystallization by slow solvent evaporation was carried out when the above-referred techniques strongly suggest the formation of a new solid form. The structure of five new multicomponent solids has been determined by single crystal X-ray diffraction. Additional stability studies have been performed at controlled relative humidity conditions and followed by PXRD.


2006 ◽  
Vol 47 ◽  
pp. 7-16 ◽  
Author(s):  
Giovanni Giunchi ◽  
Giovanni Ripamonti ◽  
Elena Perini ◽  
Stefano Ginocchio ◽  
Enrico Bassani ◽  
...  

The issues in the conventional sintering of the MgB2 superconductors have conducted to the discovery of a new way to densify this material. The new process is an “in situ” method that relies on the reactive liquid infiltration (RLI) of liquid Magnesium into Boron powders packed preform. The RLI process allows to obtain highly dense manufacts without the use of hot pressing apparatus and can be applied to the manufacture of large superconducting pieces. One of the peculiarities of the MgB2 superconductivity, that withstand up to 39 K, is represented by the relative insensitiveness of the supercurrent percolation to the orientation of the grain boundaries. This property allows to use polycrystalline material without loosing superconducting performance, granted that a good connectivity between the crystalline grains must be realized, as the RLI process allows to do. The microstructure of the bulk material obtained by RLI shows a variety of morphologies, according to the kind of the used Boron powders and to the process variables. A detailed analysis of the microstructure of the MgB2 obtained by RLI will be presented, as well as its analytical description and the correlation with the superconducting characteristics.


Sign in / Sign up

Export Citation Format

Share Document