scholarly journals A swiss cheese theorem for linear operators with two invariant subspaces

2015 ◽  
Vol 143 (12) ◽  
pp. 5097-5111
Author(s):  
Audrey Moore ◽  
Markus Schmidmeier
2008 ◽  
Vol 2008 (614) ◽  
pp. 1-52 ◽  
Author(s):  
Claus Michael Ringel ◽  
Markus Schmidmeier

1977 ◽  
Vol 227 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Palle E. T. J�rgensen

1981 ◽  
Vol 33 (6) ◽  
pp. 1291-1308 ◽  
Author(s):  
Mehdi Radjabalipour

For each natural number n we define to be the class of all weakly closed algebras of (bounded linear) operators on a separable Hilbert space H such that the lattice of invariant subspaces of and (alg lat )(n) are the same. (If A is an operator, A(n) denotes the direct sum of n copies of A; if is a collection of operators,. Also, alg lat denotes the algebra of all operators leaving all invariant subspaces of invariant.) In the first section we show that . In Section 2 we prove that every weakly closed algebra containing a maximal abelian self adjoint algebra (m.a.s.a.) is , and that . It is also shown that certain algebras containing a m.a.s.a. are necessarily reflexive.


1975 ◽  
Vol 27 (1) ◽  
pp. 152-154
Author(s):  
Edward A. Azoff

Let be a Hilbert space and denote the collection of (bounded, linear) operators on by . Throughout this paper, the term ‘algebra’ will refer to a subalgebra of ; unless otherwise stated, it will not be assumed to contain I or to be closed in any topology.An algebra is said to be transitive if it has no non-trivial invariant subspaces. The following lemma has revolutionized the study of transitive algebras. For a pr∞f and a general discussion of its implications, the reader is referred to [5].


2019 ◽  
Vol 99 (2) ◽  
pp. 274-283
Author(s):  
AMANOLLAH ASSADI ◽  
MOHAMAD ALI FARZANEH ◽  
HAJI MOHAMMAD MOHAMMADINEJAD

We seek a sufficient condition which preserves almost-invariant subspaces under the weak limit of bounded operators. We study the bounded linear operators which have a collection of almost-invariant subspaces and prove that a bounded linear operator on a Banach space, admitting each closed subspace as an almost-invariant subspace, can be decomposed into the sum of a multiple of the identity and a finite-rank operator.


Author(s):  
VLADIMIR PROTASOV

Refinement equations of the type [Formula: see text] play an exceptional role in the theory of wavelets, subdivision algorithms and computer design. It is known that the regularity of their compactly supported solutions (refinable functions) depends on the spectral properties of special N-dimensional linear operators T0, T1 constructed by the coefficients of the equation. In particular, the structure of kernels and of common invariant subspaces of these operators have been intensively studied in the literature. In this paper, we give a complete classification of the kernels and of all the root subspaces of T0 and T1, as well as of their common invariant subspaces. This result answers several open questions stated in the literature and clarifies the structure of the space spanned by the integer translates of refinable functions. This also leads to some results on the moduli of continuity of refinable functions and wavelets in various functional spaces. In particular, it is proved that the Hölder exponent of those functions is sharp whenever it is not an integer.


Sign in / Sign up

Export Citation Format

Share Document