scholarly journals Book Review: Spherical Harmonics. An elementary treatise on Harmonic Functions

1928 ◽  
Vol 34 (6) ◽  
pp. 779-781 ◽  
Author(s):  
G. E. Raynor
2019 ◽  
Vol 124 (1) ◽  
pp. 81-101
Author(s):  
Manfred Stoll

In the paper we characterize the reproducing kernel $\mathcal {K}_{n,h}$ for the Hardy space $\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\mathbb {B}$ in $\mathbb {R}^n$. Specifically we prove that \[ \mathcal {K}_{n,h}(x,y) = \sum _{\alpha =0}^\infty S_{n,\alpha }(\lvert x\rvert )S_{n,\alpha }(\lvert y\rvert ) Z_\alpha (x,y), \] where the series converges absolutely and uniformly on $K\times \mathbb {B}$ for every compact subset $K$ of $\mathbb {B}$. In the above, $S_{n,\alpha }$ is a hypergeometric function and $Z_\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \[ 0\le \mathcal K_{n,h}(x,y) \le \frac {C_n}{(1-2\langle x,y\rangle + \lvert x \rvert^2 \lvert y \rvert^2)^{n-1}}, \] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\varDelta_h $ on $\mathbb{B} $ with eigenvalue $\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\varDelta_h $ on $\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\varDelta_h $ with eigenvalue $\lambda _\alpha = 4(n-1)^2\alpha (\alpha -1)$, then \[ g(r) = g(0) \frac {p_{n,\alpha }(r^2)}{(1-r^2)^{(\alpha -1)(n-1)}}, \] where $p_{n,\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\alpha }(r^2)$ is a polynomial of degree $2(\alpha -1)(n-1)$.


Author(s):  
N. Ormerod

AbstractThe purpose of this paper is to present a novel proof of a well-known relationship between functions in harmonic subspaces of L2(Rn) ∪ L1 (Rn) and their Fourier transforms. The proof uses a characterisation of spherical harmonics given by Hecke and a method developed by the author in a previous paper.


2014 ◽  
Vol 66 (2) ◽  
pp. 284-302
Author(s):  
Kjersti Solberg Eikrem

Abstract. Let h∞v (D) and h∞v (B) be the spaces of harmonic functions in the unit disk and multidimensional unit ball admitting a two-sided radial majorant v(r). We consider functions v that fulfill a doubling condition. In the two-dimensional case letwhere ξ ={ξji} is a sequence of random subnormal variables and aji are real. In higher dimensions we consider series of spherical harmonics. We will obtain conditions on the coefficients aji that imply that u is in h∞v (B) almost surely. Our estimate improves previous results by Bennett, Stegenga, and Timoney, and we prove that the estimate is sharp. The results for growth spaces can easily be applied to Bloch-type spaces, and we obtain a similar characterization for these spaces that generalizes results by Anderson, Clunie, and Pommerenke and by Guo and Liu.


2021 ◽  
Author(s):  
◽  
Matt Majic

<p>This thesis is concerned with electrostatic boundary problems and how their solutions behave depending on the chosen basis of harmonic functions and the location of the fundamental singularities of the potential.  The first part deals with the method of images for simple geometries where the exact nature of the image/fundamental singularity is unknown; essentially a study of analytic continuation for Laplace's equation in 3 dimensions. For the sphere, spheroid and cylinder, new deductions are made on the location of the images of point charges and their linear or surface charge densities, by using different harmonic series solutions that reveal the image.  The second part looks for analytic expressions for the T-matrix for electromagnetic scattering of simple objects in the low frequency limit. In this formalism the incident and scattered fields are expanded on an orthogonal basis such as spherical harmonics, and the T-matrix is the transformation between the coefficients of these series, providing the general solution of any electromagnetic scattering problem by a given particle at a given wavelength. For the spheroid, bispherical system and torus, the natural basis of harmonic functions for the geometry of the scatterer are used to determine T-matrix expressed in that basis, which is then transformed onto a basis of canonical spherical harmonics via the linear relationships between different bases of harmonic functions.</p>


2021 ◽  
Author(s):  
◽  
Matt Majic

<p>This thesis is concerned with electrostatic boundary problems and how their solutions behave depending on the chosen basis of harmonic functions and the location of the fundamental singularities of the potential.  The first part deals with the method of images for simple geometries where the exact nature of the image/fundamental singularity is unknown; essentially a study of analytic continuation for Laplace's equation in 3 dimensions. For the sphere, spheroid and cylinder, new deductions are made on the location of the images of point charges and their linear or surface charge densities, by using different harmonic series solutions that reveal the image.  The second part looks for analytic expressions for the T-matrix for electromagnetic scattering of simple objects in the low frequency limit. In this formalism the incident and scattered fields are expanded on an orthogonal basis such as spherical harmonics, and the T-matrix is the transformation between the coefficients of these series, providing the general solution of any electromagnetic scattering problem by a given particle at a given wavelength. For the spheroid, bispherical system and torus, the natural basis of harmonic functions for the geometry of the scatterer are used to determine T-matrix expressed in that basis, which is then transformed onto a basis of canonical spherical harmonics via the linear relationships between different bases of harmonic functions.</p>


Sign in / Sign up

Export Citation Format

Share Document