The reproducing kernel of $\mathcal H^2$ and radial eigenfunctions of the hyperbolic Laplacian

2019 ◽  
Vol 124 (1) ◽  
pp. 81-101
Author(s):  
Manfred Stoll

In the paper we characterize the reproducing kernel $\mathcal {K}_{n,h}$ for the Hardy space $\mathcal {H}^2$ of hyperbolic harmonic functions on the unit ball $\mathbb {B}$ in $\mathbb {R}^n$. Specifically we prove that \[ \mathcal {K}_{n,h}(x,y) = \sum _{\alpha =0}^\infty S_{n,\alpha }(\lvert x\rvert )S_{n,\alpha }(\lvert y\rvert ) Z_\alpha (x,y), \] where the series converges absolutely and uniformly on $K\times \mathbb {B}$ for every compact subset $K$ of $\mathbb {B}$. In the above, $S_{n,\alpha }$ is a hypergeometric function and $Z_\alpha $ is the reproducing kernel of the space of spherical harmonics of degree α. In the paper we prove that \[ 0\le \mathcal K_{n,h}(x,y) \le \frac {C_n}{(1-2\langle x,y\rangle + \lvert x \rvert^2 \lvert y \rvert^2)^{n-1}}, \] where $C_n$ is a constant depending only on $n$. It is known that the diagonal function $\mathcal K_{n,h}(x,x)$ is a radial eigenfunction of the hyperbolic Laplacian $\varDelta_h $ on $\mathbb{B} $ with eigenvalue $\lambda _2 = 8(n-1)^2$. The result for $n=4$ provides motivation that leads to an explicit characterization of all radial eigenfunctions of $\varDelta_h $ on $\mathbb{B} $. Specifically, if $g$ is a radial eigenfunction of $\varDelta_h $ with eigenvalue $\lambda _\alpha = 4(n-1)^2\alpha (\alpha -1)$, then \[ g(r) = g(0) \frac {p_{n,\alpha }(r^2)}{(1-r^2)^{(\alpha -1)(n-1)}}, \] where $p_{n,\alpha }$ is again a hypergeometric function. If α is an integer, then $p_{n,\alpha }(r^2)$ is a polynomial of degree $2(\alpha -1)(n-1)$.

2014 ◽  
Vol 66 (2) ◽  
pp. 284-302
Author(s):  
Kjersti Solberg Eikrem

Abstract. Let h∞v (D) and h∞v (B) be the spaces of harmonic functions in the unit disk and multidimensional unit ball admitting a two-sided radial majorant v(r). We consider functions v that fulfill a doubling condition. In the two-dimensional case letwhere ξ ={ξji} is a sequence of random subnormal variables and aji are real. In higher dimensions we consider series of spherical harmonics. We will obtain conditions on the coefficients aji that imply that u is in h∞v (B) almost surely. Our estimate improves previous results by Bennett, Stegenga, and Timoney, and we prove that the estimate is sharp. The results for growth spaces can easily be applied to Bloch-type spaces, and we obtain a similar characterization for these spaces that generalizes results by Anderson, Clunie, and Pommerenke and by Guo and Liu.


2013 ◽  
Vol 18 (1) ◽  
pp. 66-79 ◽  
Author(s):  
Shaolin Chen ◽  
Saminathan Ponnusamy ◽  
Xiantao Wang

In this paper, we discuss some properties on hyperbolic-harmonic functions in the unit ball of ℂ n . First, we investigate the relationship between the weighted Lipschitz functions and the hyperbolic-harmonic Bloch spaces. Then we establish the Schwarz–Pick type theorem for hyperbolic-harmonic functions and apply it to prove the existence of Landau-Bloch constant for functions in α-Bloch spaces.


Author(s):  
Tirthankar Bhattacharyya ◽  
B Krishna Das ◽  
Haripada Sau

Abstract The symmetrized bidisc has been a rich field of holomorphic function theory and operator theory. A certain well-known reproducing kernel Hilbert space of holomorphic functions on the symmetrized bidisc resembles the Hardy space of the unit disc in several aspects. This space is known as the Hardy space of the symmetrized bidisc. We introduce the study of those operators on the Hardy space of the symmetrized bidisc that are analogous to Toeplitz operators on the Hardy space of the unit disc. More explicitly, we first study multiplication operators on a bigger space (an $L^2$-space) and then study compressions of these multiplication operators to the Hardy space of the symmetrized bidisc and prove the following major results. (1) Theorem I analyzes the Hardy space of the symmetrized bidisc, not just as a Hilbert space, but as a Hilbert module over the polynomial ring and finds three isomorphic copies of it as $\mathbb D^2$-contractive Hilbert modules. (2) Theorem II provides an algebraic, Brown and Halmos-type characterization of Toeplitz operators. (3) Theorem III gives several characterizations of an analytic Toeplitz operator. (4) Theorem IV characterizes asymptotic Toeplitz operators. (5) Theorem V is a commutant lifting theorem. (6) Theorem VI yields an algebraic characterization of dual Toeplitz operators. Every section from Section 2 to Section 7 contains a theorem each, the main result of that section.


Author(s):  
CAIXIA DENG ◽  
YULING QU ◽  
LIJUAN GU

In this paper, Journe wavelet function is introduced as a wavelet generating function. The expression of reproducing kernel function for the image space of this wavelet transform is obtained based on the fact that the image space of the wavelet transform is a reproducing kernel Hilbert space. Then the isometric identity of Journe wavelet transform is obtained. The connections between the image space of the wavelet transform and the image space of the known reproducing kernel space are established by the theories of reproducing kernel. The properties and the structures of the image space of the wavelet transform can be characterized by the properties and the structures of the image space of the known reproducing kernel space. Using the ideas of reproducing kernel, we consider there are relations between the wavelet transform and the sampling theorem. Meanwhile, the approximations in sampling theorems is shown and the truncation error is given. This provides a theoretical basis for us to study the image space of the general wavelet transform and broadens the scope of application of theories of the reproducing kernel space.


2015 ◽  
Vol 67 (5) ◽  
pp. 1161-1200 ◽  
Author(s):  
Junqiang Zhang ◽  
Jun Cao ◽  
Renjin Jiang ◽  
Dachun Yang

AbstractLet w be either in the Muckenhoupt class of A2(ℝn) weights or in the class of QC(ℝn) weights, and let be the degenerate elliptic operator on the Euclidean space ℝn, n ≥ 2. In this article, the authors establish the non-tangential maximal function characterization of the Hardy space associated with , and when with , the authors prove that the associated Riesz transform is bounded from to the weighted classical Hardy space .


2012 ◽  
Vol 55 (1) ◽  
pp. 146-152 ◽  
Author(s):  
Songxiao Li ◽  
Hasi Wulan ◽  
Kehe Zhu

AbstractIt has been shown that a holomorphic function f in the unit ball of ℂn belongs to the weighted Bergman space , p > n + 1 + α, if and only if the function | f(z) – f(w)|/|1 – 〈z, w〉| is in Lp( × , dvβ × dvβ), where β = (p + α – n – 1)/2 and dvβ(z) = (1 – |z|2)βdv(z). In this paper we consider the range 0 < p < n + 1 + α and show that in this case, f ∈ (i) if and only if the function | f(z) – f(w)|/|1 – hz, wi| is in Lp( × , dvα × dvα), (ii) if and only if the function | f(z)– f(w)|/|z–w| is in Lp( × , dvα × dvα). We think the revealed difference in the weights for the double integrals between the cases 0 < p < n + 1 + α and p > n + 1 + α is particularly interesting.


2006 ◽  
Vol 279 (16) ◽  
pp. 1797-1807 ◽  
Author(s):  
Guoen Hu ◽  
Shuang Liang

Sign in / Sign up

Export Citation Format

Share Document