scholarly journals Hyperbolic convexity and the analytic fixed point function

2007 ◽  
Vol 135 (04) ◽  
pp. 1181-1181 ◽  
Author(s):  
Alexander Yu. Solynin
Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1893
Author(s):  
Feng ◽  
Feng ◽  
Wen

In this paper, a fixed-point iterative filter developed from the classical extended Kalman filter (EKF) was proposed for general nonlinear systems. As a nonlinear filter developed from EKF, the state estimate was obtained by applying the Kalman filter to the linearized system by discarding the higher-order Taylor series items of the original nonlinear system. In order to reduce the influence of the discarded higher-order Taylor series items and improve the filtering accuracy of the obtained state estimate of the steady-state EKF, a fixed-point function was solved though a nested iterative method, which resulted in a fixed-point iterative filter. The convergence of the fixed-point function is also discussed, which provided the existing conditions of the fixed-point iterative filter. Then, Steffensen’s iterative method is presented to accelerate the solution of the fixed-point function. The final simulation is provided to illustrate the feasibility and the effectiveness of the proposed nonlinear filtering method.


2006 ◽  
Vol 5 (2) ◽  
pp. 275-299 ◽  
Author(s):  
Diego Mejía ◽  
Christian Pommerenke
Keyword(s):  

2014 ◽  
Author(s):  
Hafizudin Mohamad Nor ◽  
Ahmad Izani Md. Ismail ◽  
Ahmad Abdul Majid

2003 ◽  
Author(s):  
Robin R. Vallacher ◽  
Andrzej Nowak ◽  
Matthew Rockloff
Keyword(s):  

2000 ◽  
Vol 39 (02) ◽  
pp. 118-121 ◽  
Author(s):  
S. Akselrod ◽  
S. Eyal

Abstract:A simple nonlinear beat-to-beat model of the human cardiovascular system has been studied. The model, introduced by DeBoer et al. was a simplified linearized version. We present a modified model which allows to investigate the nonlinear dynamics of the cardiovascular system. We found that an increase in the -sympathetic gain, via a Hopf bifurcation, leads to sustained oscillations both in heart rate and blood pressure variables at about 0.1 Hz (Mayer waves). Similar oscillations were observed when increasing the -sympathetic gain or decreasing the vagal gain. Further changes of the gains, even beyond reasonable physiological values, did not reveal another bifurcation. The dynamics observed were thus either fixed point or limit cycle. Introducing respiration into the model showed entrainment between the respiration frequency and the Mayer waves.


Sign in / Sign up

Export Citation Format

Share Document