scholarly journals A polarized partition relation for cardinals of countable cofinality

2007 ◽  
Vol 136 (04) ◽  
pp. 1445-1449
Author(s):  
Albin L. Jones
Keyword(s):  
1999 ◽  
Vol 64 (2) ◽  
pp. 436-442 ◽  
Author(s):  
Péter Komjáth

One of the early partition relation theorems which include ordinals was the observation of Erdös and Rado [7] that if κ = cf(κ) > ω then the Dushnik–Miller theorem can be sharpened to κ→(κ, ω + 1)2. The question on the possible further extension of this result was answered by Hajnal who in [8] proved that the continuum hypothesis implies ω1 ↛ (ω1, ω + 2)2. He actually proved the stronger result ω1 ↛ (ω: 2))2. The consistency of the relation κ↛(κ, (ω: 2))2 was later extensively studied. Baumgartner [1] proved it for every κ which is the successor of a regular cardinal. Laver [9] showed that if κ is Mahlo there is a forcing notion which adds a witness for κ↛ (κ, (ω: 2))2 and preserves Mahloness, ω-Mahloness of κ, etc. We notice in connection with these results that λ→(λ, (ω: 2))2 holds if λ is singular, in fact λ→(λ, (μ: n))2 for n < ω, μ < λ (Theorem 4).In [11] Todorčević proved that if cf(λ) > ω then a ccc forcing can add a counter-example to λ→(λ, ω + 2)2. We give an alternative proof of this (Theorem 5) and extend it to larger cardinals: if GCH holds, cf (λ) > κ = cf (κ) then < κ-closed, κ+-c.c. forcing adds a counter-example to λ→(λ, κ + 2)2 (Theorem 6).Erdös and Hajnal remarked in their problem paper [5] that Galvin had proved ω2→(ω1, ω + 2)2 and he had also asked if ω2→(ω1, ω + 3)2 is true. We show in Theorem 1 that the negative relation is consistent.


2019 ◽  
Vol 84 (02) ◽  
pp. 473-496 ◽  
Author(s):  
JING ZHANG

AbstractThe classical Halpern–Läuchli theorem states that for any finite coloring of a finite product of finitely branching perfect trees of height ω, there exist strong subtrees sharing the same level set such that tuples in the product of the strong subtrees consisting of elements lying on the same level get the same color. Relative to large cardinals, we establish the consistency of a tail cone version of the Halpern–Läuchli theorem at a large cardinal (see Theorem 3.1), which, roughly speaking, deals with many colorings simultaneously and diagonally. Among other applications, we generalize a polarized partition relation on rational numbers due to Laver and Galvin to one on linear orders of larger saturation.


1999 ◽  
Vol 64 (3) ◽  
pp. 1295-1306 ◽  
Author(s):  
Marion Scheepers

AbstractIn a previous paper—[17]—we characterized strong measure zero sets of reals in terms of a Ramseyan partition relation on certain subspaces of the Alexandroff duplicate of the unit interval. This framework gave only indirect access to the relevant sets of real numbers. We now work more directly with the sets in question, and since it costs little in additional technicalities, we consider the more general context of metric spaces and prove:1. If a metric space has a covering property of Hurewicz and has strong measure zero, then its product with any strong measure zero metric space is a strong measure zero metric space (Theorem 1 and Lemma 3).2. A subspace X of a σ-compact metric space Y has strong measure zero if, and only if, a certain Ramseyan partition relation holds for Y (Theorem 9).3. A subspace X of a σ-compact metric space Y has strong measure zero in all finite powers if, and only if, a certain Ramseyan partition relation holds for Y (Theorem 12).Then 2 and 3 yield characterizations of strong measure zeroness for σ-totally bounded metric spaces in terms of Ramseyan theorems.


1972 ◽  
Vol 37 (4) ◽  
pp. 673-676 ◽  
Author(s):  
E. M. Kleinberg ◽  
R. A. Shore

Although there are many characterizations of weakly compact cardinals (e.g. in terms of indescnbability and tree properties as well as compactness) the most interesting set-theoretic (combinatorial) one is in terms of partition relations. To be more precise we define for κ and α cardinals and n an integer the partition relation of Erdös, Hajnal and Rado [2] as follows:For every function F: [κ]n→ α (called a partition of [κ]n, the n-element subsets of κ, into α pieces), there exists a set C⊆ κ (called homogeneous for F) such that card C = κ and F″[C]n≠ α, i.e. some element of the range is omitted when F is restricted to the n-element subsets of C. It is the simplest (nontrivial) of these relations, i.e. , that is the well-known equivalent of weak compactness.1Two directions of inquiry immediately suggest themselves when weak compactness is described in terms of these partition relations: (a) Trying to strengthen the relation by increasing the superscript—e.g., —and (b) trying to weaken the relation by increasing the subscript—e.g., . As it turns out, the strengthening to is only illusory for using the equivalence of to the tree property one quickly sees that implies (and so is equivalent to) for every n. Thus is the strongest of these partition relations. The second question seems much more difficult.


1999 ◽  
Vol 109 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Carlos Gugusto Di Prisco ◽  
Stevo Todorcevic
Keyword(s):  

10.37236/1502 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Albin L. Jones

We provide a much shorter proof of the following partition theorem of P. Erdős and R. Rado: If $X$ is an uncountable linear order into which neither $\omega_1$ nor $\omega_1^{*}$ embeds, then $X \to (\alpha, 4)^{3}$ for every ordinal $\alpha < \omega + \omega$. We also provide two counterexamples to possible generalizations of this theorem, one of which answers a question of E. C. Milner and K. Prikry.


Sign in / Sign up

Export Citation Format

Share Document