scholarly journals A lower bound for the volume of strictly convex bodies with many boundary lattice points

1963 ◽  
Vol 106 (2) ◽  
pp. 270-270 ◽  
Author(s):  
George E. Andrews
Author(s):  
Alina Stancu

Abstract We study a curvature flow on smooth, closed, strictly convex hypersurfaces in $\mathbb{R}^n$, which commutes with the action of $SL(n)$. The flow shrinks the initial hypersurface to a point that, if rescaled to enclose a domain of constant volume, is a smooth, closed, strictly convex hypersurface in $\mathbb{R}^n$ with centro-affine curvature proportional, but not always equal, to the centro-affine curvature of a fixed hypersurface. We outline some consequences of this result for the geometry of convex bodies and the logarithmic Minkowski inequality.


1992 ◽  
Vol 62 (3) ◽  
pp. 285-295 ◽  
Author(s):  
Ekkehard Krätzel ◽  
Werner Nowak
Keyword(s):  

1999 ◽  
Vol 51 (2) ◽  
pp. 225-249 ◽  
Author(s):  
U. Betke ◽  
K. Böröczky

AbstractLet M be a convex body such that the boundary has positive curvature. Then by a well developed theory dating back to Landau and Hlawka for large λ the number of lattice points in λM is given by G(λM) = V(λM) + O(λd−1−ε(d)) for some positive ε(d). Here we give for general convex bodies the weaker estimatewhere SZd (M) denotes the lattice surface area of M. The term SZd is optimal for all convex bodies and o(λd−1) cannot be improved in general. We prove that the same estimate even holds if we allow small deformations of M.Further we deal with families {Pλ} of convex bodies where the only condition is that the inradius tends to infinity. Here we havewhere the convex body K satisfies some simple condition, V(Pλ; K; 1) is some mixed volume and S(Pλ) is the surface area of Pλ.


1953 ◽  
Vol 5 ◽  
pp. 261-270 ◽  
Author(s):  
Harvey Cohn

The consideration of relative extrema to correspond to the absolute extremum which is the critical lattice has been going on for some time. As far back as 1873, Korkine and Zolotareff [6] worked with the ellipsoid in hyperspace (i.e., with quadratic forms), and later Minkowski [8] worked with a general convex body in two or three dimensions. They showed how to find critical lattices by selection from among a finite number of relative extrema. They were aided by the long-recognized premise that only a finite number of lattice points can enter into consideration [1] when one deals with lattices “admissible to convex bodies.”


1975 ◽  
Vol 48 (2) ◽  
pp. 110 ◽  
Author(s):  
P. R. Scott
Keyword(s):  

1973 ◽  
Vol 74 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Vishwa Chander Dumir ◽  
Dharam Singh Khassa

Let K be a closed, bounded, symmetric convex domain with centre at the origin O and gauge function F(x). By a homothetic translate of K with centre a and radius r we mean the set {x: F(x−a) ≤ r}. A family ℳ of homothetic translates of K is called a saturated family or a saturated system if (i) the infimum r of the radii of sets in ℳ is positive and (ii) every homothetic translate of K of radius r intersects some member of ℳ. For a saturated family ℳ of homothetic translates of K, let S denote the point-set union of the interiors of members of ℳ and S(l), the set S ∪ {x: F(x) ≤ l}. The lower density ρℳ(K) of the saturated system ℳ is defined bywhere V(S(l)) denotes the Lebesgue measure of the set S(l). The problem is to find the greatest lower bound ρK of ρℳ(K) over all saturated systems ℳ of homothetic translates of K. In case K is a circle, Fejes Tóth(9) conjectured thatwhere ϑ(K) denotes the density of the thinnest coverings of the plane by translates of K. In part I, we state results already known in this direction. In part II, we prove that ρK = (¼) ϑ(K) when K is strictly convex and in part III, we prove that ρK = (¼) ϑ(K) for all symmetric convex domains.


Sign in / Sign up

Export Citation Format

Share Document