Prescribing Centro-Affine Curvature From One Convex Body to Another

Author(s):  
Alina Stancu

Abstract We study a curvature flow on smooth, closed, strictly convex hypersurfaces in $\mathbb{R}^n$, which commutes with the action of $SL(n)$. The flow shrinks the initial hypersurface to a point that, if rescaled to enclose a domain of constant volume, is a smooth, closed, strictly convex hypersurface in $\mathbb{R}^n$ with centro-affine curvature proportional, but not always equal, to the centro-affine curvature of a fixed hypersurface. We outline some consequences of this result for the geometry of convex bodies and the logarithmic Minkowski inequality.

1973 ◽  
Vol 25 (3) ◽  
pp. 531-538 ◽  
Author(s):  
L. B. Jonker ◽  
R. D. Norman

Let M be an n-dimensional connected topological manifold. Let ξ : M → Rn+1 be a continuous map with the following property: to each x ∈ M there is an open set x ∈ Ux ⊂ M, and a convex body Kx ⊂ Rn+1 such that ξ(UX) is an open subset of ∂Kx and such that is a homeomorphism onto its image. We shall call such a mapping ξ a locally convex immersion and, along with Van Heijenoort [8] we shall call ξ(M) a locally convex hypersurface of Rn+1.


2020 ◽  
Vol 18 (1) ◽  
pp. 1518-1530
Author(s):  
Xuesen Qi ◽  
Ximin Liu

Abstract In this paper, we discuss the monotonicity of the first nonzero eigenvalue of the Laplace operator and the p-Laplace operator under a forced mean curvature flow (MCF). By imposing conditions associated with the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced MCF, and some special pinching conditions on the second fundamental form of the initial hypersurface, we prove that the first nonzero closed eigenvalues of the Laplace operator and the p-Laplace operator are monotonic under the forced MCF, respectively, which partially generalize Mao and Zhao’s work. Moreover, we give an example to specify applications of conclusions obtained above.


2018 ◽  
Vol 70 (4) ◽  
pp. 804-823 ◽  
Author(s):  
Apostolos Giannopoulos ◽  
Alexander Koldobsky ◽  
Petros Valettas

AbstractWe provide general inequalities that compare the surface area S(K) of a convex body K in ℝn to the minimal, average, or maximal surface area of its hyperplane or lower dimensional projections. We discuss the same questions for all the quermassintegrals of K. We examine separately the dependence of the constants on the dimension in the case where K is in some of the classical positions or K is a projection body. Our results are in the spirit of the hyperplane problem, with sections replaced by projections and volume by surface area.


2001 ◽  
Vol 12 (08) ◽  
pp. 877-890 ◽  
Author(s):  
A. SUKHOV ◽  
A. TUMANOV

We give a construction of stationary discs and the indicatrix for manifolds of higher codimension which is a partial analog of L. Lempert's theory of stationary discs for strictly convex hypersurfaces. This leads to new invariants of the CR structure in higher codimension linked with the contact structure of the conormal bundle.


2018 ◽  
Vol 18 (4) ◽  
pp. 763-774
Author(s):  
Hui Liu ◽  
Gaosheng Zhu

AbstractLet {n\geq 2} be an integer, {P=\mathrm{diag}(-I_{n-\kappa},I_{\kappa},-I_{n-\kappa},I_{\kappa})} for some integer {\kappa\in[0,n]}, and let {\Sigma\subset{\mathbb{R}}^{2n}} be a partially symmetric compact convex hypersurface, i.e., {x\in\Sigma} implies {Px\in\Sigma}, and {(r,R)}-pinched. In this paper, we prove that when {{R/r}<\sqrt{5/3}} and {0\leq\kappa\leq[\frac{n-1}{2}]}, there exist at least {E(\frac{n-2\kappa-1}{2})+E(\frac{n-2\kappa-1}{3})} non-hyperbolic P-invariant closed characteristics on Σ. In addition, when {{R/r}<\sqrt{3/2}}, {[\frac{n+1}{2}]\leq\kappa\leq n} and Σ carries exactly nP-invariant closed characteristics, then there exist at least {2E(\frac{2\kappa-n-1}{4})+E(\frac{n-\kappa-1}{3})} non-hyperbolic P-invariant closed characteristics on Σ, where the function {E(a)} is defined as {E(a)=\min{\{k\in{\mathbb{Z}}\mid k\geq a\}}} for any {a\in\mathbb{R}}.


2008 ◽  
Vol 142 (2) ◽  
pp. 283-312 ◽  
Author(s):  
Jan Metzger ◽  
Felix Schulze

2009 ◽  
Vol 52 (3) ◽  
pp. 361-365 ◽  
Author(s):  
Fejes Tóth Gábor

AbstractA classical theorem of Rogers states that for any convex body K in n-dimensional Euclidean space there exists a covering of the space by translates of K with density not exceeding n log n + n log log n + 5n. Rogers’ theorem does not say anything about the structure of such a covering. We show that for sufficiently large values of n the same bound can be attained by a covering which is the union of O(log n) translates of a lattice arrangement of K.


2019 ◽  
Vol 32 (02) ◽  
pp. 2030001 ◽  
Author(s):  
J. Avron ◽  
O. Kenneth

This is a review of the geometry of quantum states using elementary methods and pictures. Quantum states are represented by a convex body, often in high dimensions. In the case of [Formula: see text] qubits, the dimension is exponentially large in [Formula: see text]. The space of states can be visualized, to some extent, by its simple cross sections: Regular simplexes, balls and hyper-octahedra. a When the dimension gets large, there is a precise sense in which the space of states resembles, almost in every direction, a ball. The ball turns out to be a ball of rather low purity states. We also address some of the corresponding, but harder, geometric properties of separable and entangled states and entanglement witnesses. “All convex bodies behave a bit like Euclidean balls.” Keith Ball


Sign in / Sign up

Export Citation Format

Share Document