scholarly journals The moment map of a Lie group representation

1992 ◽  
Vol 330 (1) ◽  
pp. 257-268 ◽  
Author(s):  
N. J. Wildberger
1983 ◽  
Vol 3 (2) ◽  
pp. 219-230 ◽  
Author(s):  
Victor Guillemin ◽  
Shlomo Sternberg

AbstractLet G be a Lie group acting in Hamiltonian fashion on a symplectic manifold M with moment map Φ:M → g*. A function of the form ƒ∘Φ where ƒ is a function on g* is called ‘collective’. We obtain necessary conditions on the G action for there to exist enough Poisson commuting functions on g* so that the corresponding collective functions on M form a completely integrable system. For the case G = O(n) or U(n) these conditions are sufficient. This explains Thimm's proof [17] of the complete integrability of the geodesic flow on the real and complex grassmanians. We also discuss related questions in the geometry of the moment map.


2021 ◽  
Vol 33 (3) ◽  
pp. 593-600
Author(s):  
Roberto Ferreiro Pérez

Abstract If ω is a closed G-invariant 2-form and μ is a moment map, we obtain necessary and sufficient conditions for equivariant prequantizability that can be computed in terms of the moment map μ. Our main result is that G-equivariant prequantizability is related to the fact that the moment map μ should be quantized for certain vectors on the Lie algebra of G. We also compute the obstructions to lift the action of G to a prequantization bundle of ω. Our results are valid for any compact and connected Lie group G.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 642
Author(s):  
Frédéric Barbaresco

In 1969, Jean-Marie Souriau introduced a “Lie Groups Thermodynamics” in Statistical Mechanics in the framework of Geometric Mechanics. This Souriau’s model considers the statistical mechanics of dynamic systems in their “space of evolution” associated to a homogeneous symplectic manifold by a Lagrange 2-form, and defines in case of non null cohomology (non equivariance of the coadjoint action on the moment map with appearance of an additional cocyle) a Gibbs density (of maximum entropy) that is covariant under the action of dynamic groups of physics (e.g., Galileo’s group in classical physics). Souriau Lie Group Thermodynamics was also addressed 30 years after Souriau by R.F. Streater in the framework of Quantum Physics by Information Geometry for some Lie algebras, but only in the case of null cohomology. Souriau method could then be applied on Lie groups to define a covariant maximum entropy density by Kirillov representation theory. We will illustrate this method for homogeneous Siegel domains and more especially for Poincaré unit disk by considering SU(1,1) group coadjoint orbit and by using its Souriau’s moment map. For this case, the coadjoint action on moment map is equivariant. For non-null cohomology, we give the case of Lie group SE(2). Finally, we will propose a new geometric definition of Entropy that could be built as a generalized Casimir invariant function in coadjoint representation, and Massieu characteristic function, dual of Entropy by Legendre transform, as a generalized Casimir invariant function in adjoint representation, where Souriau cocycle is a measure of the lack of equivariance of the moment mapping.


1996 ◽  
Vol 126 (1) ◽  
pp. 65-84 ◽  
Author(s):  
Peter Heinzner ◽  
Alan Huckleberry

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Aleix Gimenez-Grau ◽  
Pedro Liendo

Abstract We apply the numerical conformal bootstrap to correlators of Coulomb and Higgs branch operators in 4d$$ \mathcal{N} $$ N = 2 superconformal theories. We start by revisiting previous results on single correlators of Coulomb branch operators. In particular, we present improved bounds on OPE coefficients for some selected Argyres-Douglas models, and compare them to recent work where the same cofficients were obtained in the limit of large r charge. There is solid agreement between all the approaches. The improved bounds can be used to extract an approximate spectrum of the Argyres-Douglas models, which can then be used as a guide in order to corner these theories to numerical islands in the space of conformal dimensions. When there is a flavor symmetry present, we complement the analysis by including mixed correlators of Coulomb branch operators and the moment map, a Higgs branch operator which sits in the same multiplet as the flavor current. After calculating the relevant superconformal blocks we apply the numerical machinery to the mixed system. We put general constraints on CFT data appearing in the new channels, with particular emphasis on the simplest Argyres-Douglas model with non-trivial flavor symmetry.


10.37236/5038 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Laura Escobar

Bott-Samelson varieties are a twisted product of $\mathbb{C}\mathbb{P}^1$'s with a map into $G/B$. These varieties are mostly studied in the case in which the map into $G/B$ is birational to the image; however in this paper we study a fiber of this map when it is not birational. We prove that in some cases the general fiber, which we christen a brick manifold, is a toric variety. In order to do so we use the moment map of a Bott-Samelson variety to translate this problem into one in terms of the "subword complexes" of Knutson and Miller. Pilaud and Stump realized certain subword complexes as the dual of the boundary of a polytope which generalizes the brick polytope defined by Pilaud and Santos. For a nice family of words, the brick polytope is the generalized associahedron realized by Hohlweg, Lange and Thomas. These stories connect in a nice way: we show that the moment polytope of the brick manifold is the brick polytope. In particular, we give a nice description of the toric variety of the associahedron. We give each brick manifold a stratification dual to the subword complex. In addition, we relate brick manifolds to Brion's resolutions of Richardon varieties.


Sign in / Sign up

Export Citation Format

Share Document