Homotopy theory of normed sets II. Model categories

2018 ◽  
Vol 30 (1) ◽  
pp. 25-71
Author(s):  
N. V. Durov
2009 ◽  
Vol 147 (3) ◽  
pp. 593-614 ◽  
Author(s):  
DENIS–CHARLES CISINSKI

AbstractWe study locally constant coefficients. We first study the theory of homotopy Kan extensions with locally constant coefficients in model categories, and explain how it characterizes the homotopy theory of small categories. We explain how to interpret this in terms of left Bousfield localization of categories of diagrams with values in a combinatorial model category. Finally, we explain how the theory of homotopy Kan extensions in derivators can be used to understand locally constant functors.


2019 ◽  
Vol 125 (2) ◽  
pp. 185-198
Author(s):  
David White ◽  
Donald Yau

We prove that the arrow category of a monoidal model category, equipped with the pushout product monoidal structure and the projective model structure, is a monoidal model category. This answers a question posed by Mark Hovey, in the course of his work on Smith ideals. As a corollary, we prove that the projective model structure in cubical homotopy theory is a monoidal model structure. As illustrations we include numerous examples of non-cofibrantly generated monoidal model categories, including chain complexes, small categories, pro-categories, and topological spaces.


Author(s):  
Simon Boulier ◽  
Nicolas Tabareau

Abstract Model categories constitute the major context for doing homotopy theory. More recently, homotopy type theory (HoTT) has been introduced as a context for doing syntactic homotopy theory. In this paper, we show that a slight generalization of HoTT, called interval type theory (⫿TT), allows to define a model structure on the universe of all types, which, through the model interpretation, corresponds to defining a model structure on the category of cubical sets. This work generalizes previous works of Gambino, Garner, and Lumsdaine from the universe of fibrant types to the universe of all types. Our definition of ⫿TT comes from the work of Orton and Pitts to define a syntactic approximation of the internal language of the category of cubical sets. In this paper, we extend the work of Orton and Pitts by introducing the notion of degenerate fibrancy, which allows to define a fibrant replacement, at the heart of the model structure on the universe of all types. All our definitions and propositions have been formalized using the Coq proof assistant.


2021 ◽  

This volume contains eight research papers inspired by the 2019 'Equivariant Topology and Derived Algebra' conference, held at the Norwegian University of Science and Technology, Trondheim in honour of Professor J. P. C. Greenlees' 60th birthday. These papers, written by experts in the field, are intended to introduce complex topics from equivariant topology and derived algebra while also presenting novel research. As such this book is suitable for new researchers in the area and provides an excellent reference for established researchers. The inter-connected topics of the volume include: algebraic models for rational equivariant spectra; dualities and fracture theorems in chromatic homotopy theory; duality and stratification in tensor triangulated geometry; Mackey functors, Tambara functors and connections to axiomatic representation theory; homotopy limits and monoidal Bousfield localization of model categories.


Author(s):  
STEVE AWODEY ◽  
MICHAEL A. WARREN

Quillen [17] introduced model categories as an abstract framework for homotopy theory which would apply to a wide range of mathematical settings. By all accounts this program has been a success and—as, e.g., the work of Voevodsky on the homotopy theory of schemes [15] or the work of Joyal [11,12] and Lurie [13] on quasicategories seem to indicate—it will likely continue to facilitate mathematical advances. In this paper we present a novel connection between model categories and mathematical logic, inspired by the groupoid model of (intensional) Martin–Löf type theory [14] due to Hofmann and Streicher [9]. In particular, we show that a form of Martin–Löf type theory can be soundly modelled in any model category. This result indicates moreover that any model category has an associated “internal language” which is itself a form of Martin-Löf type theory. This suggests applications both to type theory and to homotopy theory. Because Martin–Löf type theory is, in one form or another, the theoretical basis for many of the computer proof assistants currently in use, such asCoqandAgda(cf. [3] and [5]), this promise of applications is of a practical, as well as theoretical, nature.


Sign in / Sign up

Export Citation Format

Share Document