Poisson Lie groups

Author(s):  
Leonid Korogodski ◽  
Yan Soibelman
1992 ◽  
Vol 07 (05) ◽  
pp. 853-876 ◽  
Author(s):  
V. A. FATEEV ◽  
S. L. LUKYANOV

This is the first part of a paper studying the quantum group structure of two-dimensional conformal field theory with additional symmetries. We discuss the properties of the Poisson structures possessing classical W-invariance. The Darboux variables for these Poisson structures are constructed.


1993 ◽  
Vol 17 (2) ◽  
pp. 429-441
Author(s):  
Kentaro Mikami ◽  
Fumio Narita

2016 ◽  
Vol 260 (11) ◽  
pp. 8207-8228 ◽  
Author(s):  
Ángel Ballesteros ◽  
Alfonso Blasco ◽  
Fabio Musso

1992 ◽  
Vol 07 (25) ◽  
pp. 6175-6213 ◽  
Author(s):  
T. TJIN

We give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups we study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then we explain in detail the concept of quantization for them. As an example the quantization of sl2 is explicitly carried out. Next we show how quantum groups are related to the Yang-Baxter equation and how they can be used to solve it. Using the quantum double construction we explicitly construct the universal R matrix for the quantum sl2 algebra. In the last section we deduce all finite-dimensional irreducible representations for q a root of unity. We also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory.


2008 ◽  
Vol 10 (02) ◽  
pp. 221-260 ◽  
Author(s):  
CHENGMING BAI

We introduce a notion of left-symmetric bialgebra which is an analogue of the notion of Lie bialgebra. We prove that a left-symmetric bialgebra is equivalent to a symplectic Lie algebra with a decomposition into a direct sum of the underlying vector spaces of two Lagrangian subalgebras. The latter is called a parakähler Lie algebra or a phase space of a Lie algebra in mathematical physics. We introduce and study coboundary left-symmetric bialgebras and our study leads to what we call "S-equation", which is an analogue of the classical Yang–Baxter equation. In a certain sense, the S-equation associated to a left-symmetric algebra reveals the left-symmetry of the products. We show that a symmetric solution of the S-equation gives a parakähler Lie algebra. We also show that such a solution corresponds to the symmetric part of a certain operator called "[Formula: see text]-operator", whereas a skew-symmetric solution of the classical Yang–Baxter equation corresponds to the skew-symmetric part of an [Formula: see text]-operator. Thus a method to construct symmetric solutions of the S-equation (hence parakähler Lie algebras) from [Formula: see text]-operators is provided. Moreover, by comparing left-symmetric bialgebras and Lie bialgebras, we observe that there is a clear analogue between them and, in particular, parakähler Lie groups correspond to Poisson–Lie groups in this sense.


1996 ◽  
Vol 179 (2) ◽  
pp. 295-332 ◽  
Author(s):  
Frederic Bidegain ◽  
Georges Pinczon

Sign in / Sign up

Export Citation Format

Share Document