lie bialgebras
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 6)

H-INDEX

17
(FIVE YEARS 0)

Author(s):  
Raschid Abedin ◽  
Igor Burban

AbstractThis paper is devoted to algebro-geometric study of infinite dimensional Lie bialgebras, which arise from solutions of the classical Yang–Baxter equation. We regard trigonometric solutions of this equation as twists of the standard Lie bialgebra cobracket on an appropriate affine Lie algebra and work out the corresponding theory of Manin triples, putting it into an algebro-geometric context. As a consequence of this approach, we prove that any trigonometric solution of the classical Yang–Baxter equation arises from an appropriate algebro-geometric datum. The developed theory is illustrated by some concrete examples.



Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1249
Author(s):  
Ivan Gutierrez-Sagredo ◽  
Francisco Jose Herranz

The Cayley–Klein (CK) formalism is applied to the real algebra so(5) by making use of four graded contraction parameters describing, in a unified setting, 81 Lie algebras, which cover the (anti-)de Sitter, Poincaré, Newtonian and Carrollian algebras. Starting with the Drinfel’d–Jimbo real Lie bialgebra for so(5) together with its Drinfel’d double structure, we obtain the corresponding CK bialgebra and the CK r-matrix coming from a Drinfel’d double. As a novelty, we construct the (first-order) noncommutative CK spaces of points, lines, 2-planes and 3-hyperplanes, studying their structural properties. By requiring dealing with real structures, we found that there exist 63 specific real Lie bialgebras together with their sets of four noncommutative spaces. Furthermore, we found 14 classical r-matrices coming from Drinfel’d doubles, obtaining new results for the de Sitter so(4,1) and anti-de Sitter so(3,2) as well as for some of their contractions. These geometric results were exhaustively applied onto the (3 + 1)D kinematical algebras, considering not only the usual (3 + 1)D spacetime but also the 6D space of lines. We established different assignations between the geometrical CK generators and the kinematical ones, which convey physical identifications for the CK contraction parameters in terms of the cosmological constant/curvature Λ and the speed of light c. We, finally, obtained four classes of kinematical r-matrices together with their noncommutative spacetimes and spaces of lines, comprising all κ-deformations as particular cases.





Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 465
Author(s):  
Javier de Lucas ◽  
Daniel Wysocki

This work introduces a new concept, the so-called Darboux family, which is employed to determine coboundary Lie bialgebras on real four-dimensional, indecomposable Lie algebras, as well as geometrically analysying, and classifying them up to Lie algebra automorphisms, in a relatively easy manner. The Darboux family notion can be considered as a generalisation of the Darboux polynomial for a vector field. The classification of r-matrices and solutions to classical Yang–Baxter equations for real four-dimensional indecomposable Lie algebras is also given in detail. Our methods can further be applied to general, even higher-dimensional, Lie algebras. As a byproduct, a method to obtain matrix representations of certain Lie algebras with a non-trivial center is developed.



2021 ◽  
Author(s):  
Ibrahima Bakayoko ◽  
Sei-Qwon Oh
Keyword(s):  


Author(s):  
Andrey Lazarev ◽  
Yunhe Sheng ◽  
Rong Tang

Abstract We determine the $$L_\infty $$ L ∞ -algebra that controls deformations of a relative Rota–Baxter Lie algebra and show that it is an extension of the dg Lie algebra controlling deformations of the underlying $$\mathsf {Lie}\mathsf {Rep}$$ Lie Rep  pair by the dg Lie algebra controlling deformations of the relative Rota–Baxter operator. Consequently, we define the cohomology of relative Rota–Baxter Lie algebras and relate it to their infinitesimal deformations. A large class of relative Rota–Baxter Lie algebras is obtained from triangular Lie bialgebras and we construct a map between the corresponding deformation complexes. Next, the notion of a homotopy relative Rota–Baxter Lie algebra is introduced. We show that a class of homotopy relative Rota–Baxter Lie algebras is intimately related to pre-Lie$$_\infty $$ ∞ -algebras.



2020 ◽  
Vol 156 (10) ◽  
pp. 2111-2148
Author(s):  
Sergei Merkulov ◽  
Thomas Willwacher

We settle several fundamental questions about the theory of universal deformation quantization of Lie bialgebras by giving their complete classification up to homotopy equivalence. Moreover, we settle these questions in a greater generality: we give a complete classification of the associated universal formality maps. An important new technical ingredient introduced in this paper is a polydifferential endofunctor ${\mathcal {D}}$ in the category of augmented props with the property that for any representation of a prop ${\mathcal {P}}$ in a vector space $V$ the associated prop ${\mathcal {D}}{\mathcal {P}}$ admits an induced representation on the graded commutative algebra $\odot ^\bullet V$ given in terms of polydifferential operators. Applying this functor to the minimal resolution $\widehat {\mathcal {L}\textit{ieb}}_\infty$ of the genus completed prop $\widehat {\mathcal {L}\textit{ieb}}$ of Lie bialgebras we show that universal formality maps for quantizations of Lie bialgebras are in one-to-one correspondence with morphisms of dg props \[F: \mathcal{A}\textit{ssb}_\infty \longrightarrow {\mathcal{D}}\widehat{\mathcal{L}\textit{ieb}}_\infty \] satisfying certain boundary conditions, where $\mathcal {A}\textit{ssb}_\infty$ is a minimal resolution of the prop of associative bialgebras. We prove that the set of such formality morphisms is non-empty. The latter result is used in turn to give a short proof of the formality theorem for universal quantizations of arbitrary Lie bialgebras which says that for any Drinfeld associator $\mathfrak{A}$ there is an associated ${\mathcal {L}} ie_\infty$ quasi-isomorphism between the ${\mathcal {L}} ie_\infty$ algebras $\mathsf {Def}({\mathcal {A}} ss{\mathcal {B}}_\infty \rightarrow {\mathcal {E}} nd_{\odot ^\bullet V})$ and $\mathsf {Def}({\mathcal {L}} ie{\mathcal {B}}\rightarrow {\mathcal {E}} nd_V)$ controlling, respectively, deformations of the standard bialgebra structure in $\odot V$ and deformations of any given Lie bialgebra structure in $V$. We study the deformation complex of an arbitrary universal formality morphism $\mathsf {Def}(\mathcal {A}\textit{ssb}_\infty \stackrel {F}{\rightarrow } {\mathcal {D}}\widehat {\mathcal {L}\textit{ieb}}_\infty )$ and prove that it is quasi-isomorphic to the full (i.e. not necessary connected) version of the graph complex introduced Maxim Kontsevich in the context of the theory of deformation quantizations of Poisson manifolds. This result gives a complete classification of the set $\{F_\mathfrak{A}\}$ of gauge equivalence classes of universal Lie connected formality maps: it is a torsor over the Grothendieck–Teichmüller group $GRT=GRT_1\rtimes {\mathbb {K}}^*$ and can hence can be identified with the set $\{\mathfrak{A}\}$ of Drinfeld associators.



Author(s):  
Eric Hoffbeck ◽  
Johan Leray ◽  
Bruno Vallette

Abstract In this paper, we initiate the generalization of the operadic calculus that governs the properties of homotopy algebras to a properadic calculus that governs the properties of homotopy gebras over a properad. In this first article of a series, we generalize the seminal notion of ${\infty }$-morphisms and the ubiquitous homotopy transfer theorem. As an application, we recover the homotopy properties of involutive Lie bialgebras developed by Cieliebak–Fukaya–Latschev and we produce new explicit formulas.



2020 ◽  
Vol 48 (7) ◽  
pp. 3170-3183
Author(s):  
Lei Du ◽  
Youjun Tan


Sign in / Sign up

Export Citation Format

Share Document