quantum deformations
Recently Published Documents


TOTAL DOCUMENTS

94
(FIVE YEARS 9)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Fiona K. Seibold ◽  
Alessandro Sfondrini

Abstract Two distinct η-deformations of strings on AdS5×S5 can be defined; both amount to integrable quantum deformations of the string non-linear sigma model, but only one is itself a superstring background. In this paper we compare their conjectured all-loop worldsheet S matrices and derive the corresponding Bethe equations. We find that, while the S matrices are apparently different, they lead to the same Bethe equations. Moreover, in either case the eigenvalues of the transfer matrix, which encode the conserved charges of each system, also coincide. We conclude that the integrable structure underlying the two constructions is essentially the same. Finally, we write down the full Bethe-Yang equations describing the asymptotic spectrum of the superstring background.


Author(s):  
Angel Ballesteros ◽  
Iván Gutiérrez Sagredo ◽  
Francisco Jose Herranz

Abstract The complete classification of classical r-matrices generating quantum deformations of the (3+1)-dimensional (A)dS and Poincar ́e groups such that their Lorentz sector is a quantum sub-group is presented. It is found that there exists three classes of such r-matrices, one of them being a novel two-parametric one. The (A)dS and Minkowskian Poisson homogeneous spaces corresponding to these three deformations are explicitly constructed in both local and ambient coordinates. Their quantization is performed, thus giving rise to the associated noncommutative spacetimes, that in the Minkowski case are naturally expressed in terms of quantum null-plane coordinates, and they are always defined by homogeneous quadratic algebras. Finally, non-relativistic and ultra-relativistic limits giving rise to novel Newtonian and Carrollian noncommutative spacetimes are also presented.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2099
Author(s):  
Angel Ballesteros ◽  
Giulia Gubitosi ◽  
Flavio Mercati

Recent work showed that κ-deformations can describe the quantum deformation of several relativistic models that have been proposed in the context of quantum gravity phenomenology. Starting from the Poincaré algebra of special-relativistic symmetries, one can toggle the curvature parameter Λ, the Planck scale quantum deformation parameter κ and the speed of light parameter c to move to the well-studied κ-Poincaré algebra, the (quantum) (A)dS algebra, the (quantum) Galilei and Carroll algebras and their curved versions. In this review, we survey the properties and relations of these algebras of relativistic symmetries and their associated noncommutative spacetimes, emphasizing the nontrivial effects of interplay between curvature, quantum deformation and speed of light parameters.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
I. L. Buchbinder ◽  
P. M. Lavrov

AbstractWe elaborate the generalizations of the approach to gauge-invariant deformations of the gauge theories developed in our previous work (Buchbinder and Lavrov in JHEP 06:097, 2021). In the given paper we construct the exact transformations defying the gauge-invariant deformed theory on the base of initial gauge theory with irreducible open gauge algebra. Like in [1], for the theories with open gauge algebras these transformations are the shifts of the initial gauge fields $$A \rightarrow A+h(A)$$ A → A + h ( A ) , with the help of the arbitrary and in general non-local functions h(A). The results are applied to study the quantum aspects of the deformed theories. We derive the exact relation between the quantum effective actions for the above classical theories, where one is obtained from another with the help of the deformation.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Fiona K. Seibold ◽  
Stijn J. van Tongeren ◽  
Yannik Zimmermann

Abstract We consider various integrable two-parameter deformations of the AdS3 × S3 × T4 superstring with quantum group symmetry. Working on the string worldsheet in light-cone gauge and to quadratic order in fermions, we obtain their common massive tree-level two-body S matrix, which matches the expansion of the conjectured exact q-deformed S matrix. We then analyze the behavior of the exact S matrix under mirror transformation — a double Wick rotation on the worldsheet — and find that it satisfies a mirror duality relation analogous to the distinguished q-deformed AdS5 × S5 S matrix in the one parameter deformation limit. Finally, we show that the fermionic q-deformed AdS5 × S5 S matrix also satisfies such a relation.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1309
Author(s):  
Jerzy Lukierski

We construct recently introduced palatial NC twistors by considering the pair of conjugated (Born-dual) twist-deformed D=4 quantum inhomogeneous conformal Hopf algebras Uθ(su(2,2)⋉T4) and Uθ¯(su(2,2)⋉T¯4), where T4 describes complex twistor coordinates and T¯4 the conjugated dual twistor momenta. The palatial twistors are suitably chosen as the quantum-covariant modules (NC representations) of the introduced Born-dual Hopf algebras. Subsequently, we introduce the quantum deformations of D=4 Heisenberg-conformal algebra (HCA) su(2,2)⋉Hℏ4,4 (Hℏ4,4=T¯4⋉ℏT4 is the Heisenberg algebra of twistorial oscillators) providing in twistorial framework the basic covariant quantum elementary system. The class of algebras describing deformation of HCA with dimensionfull deformation parameter, linked with Planck length λp, is called the twistorial DSR (TDSR) algebra, following the terminology of DSR algebra in space-time framework. We describe the examples of TDSR algebra linked with Palatial twistors which are introduced by the Drinfeld twist and the quantization map in Hℏ4,4. We also introduce generalized quantum twistorial phase space by considering the Heisenberg double of Hopf algebra Uθ(su(2,2)⋉T4).


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Andrzej Borowiec ◽  
Lennart Brocki ◽  
Jerzy Kowalski-Glikman ◽  
Josua Unger

Abstract BMS symmetry is a symmetry of asymptotically flat spacetimes in vicinity of the null boundary of spacetime and it is expected to play a fundamental role in physics. It is interesting therefore to investigate the structures and properties of quantum deformations of these symmetries, which are expected to shed some light on symmetries of quantum spacetime. In this paper we discuss the structure of the algebra of extended BMS symmetries in 3 and 4 spacetime dimensions, realizing that these algebras contain an infinite number of distinct Poincaré subalgebras, a fact that has previously been noted in the 3 dimensional case only. Then we use these subalgebras to construct an infinite number of different Hopf algebras being quantum deformations of the BMS algebras. We also discuss different types of twist-deformations and the dual Hopf algebras, which could be interpreted as noncommutative, extended quantum spacetimes.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Jerzy Kowalski-Glikman ◽  
Jerzy Lukierski ◽  
Tomasz Trześniewski

Abstract Following the recently obtained complete classification of quantum-deformed $$ \mathfrak{o} $$ o (4), $$ \mathfrak{o} $$ o (1, 3) and $$ \mathfrak{o} $$ o (2) algebras, characterized by classical r-matrices, we study their inhomogeneous D = 3 quantum IW contractions (i.e. the limit of vanishing cosmological constant), with Euclidean or Lorentzian signature. Subsequently, we compare our results with the complete list of D = 3 inhomogeneous Euclidean and D = 3 Poincaré quantum deformations obtained by P. Stachura. It turns out that the IW contractions allow us to recover all Stachura deformations. We further discuss the applicability of our results in the models of 3D quantum gravity in the Chern-Simons formulation (both with and with- out the cosmological constant), where it is known that the relevant quantum deformations should satisfy the Fock-Rosly conditions. The latter deformations in part of the cases are associated with the Drinfeld double structures, which also have been recently investigated in detail.


2019 ◽  
Vol 29 (4) ◽  
pp. 511
Author(s):  
Nguyen Thi Hong Van ◽  
Nguyen Anh Ky

An overparametrized (three-parametric) R-matrix satisfying a graded Yang-Baxter equation is introduced. It turns out that such an overparametrization is very helpful. Indeed, this R-matrix with one of the parameters being auxiliary, thus, reducible to a two-parametric R-matrix, allows the construction of quantum supergroups GLp,q(1/1) and Up,q[gl(1/1)] which, respectively, are two-parametric deformations of the supergroup GL(1/1) and the universal enveloping algebra U[gl(1/1)]. These two-parametric quantum deformations GLpq(1/1) and Upq[gl(1/1)], to our knowledge, are constructed for the first time via the present approach. The quantum deformation Up,q[gl(1/1)] obtained here is a true two-parametric deformation of Drinfel’d-Jimbo’s type, unlike some other one obtained previously elsewhere.


Sign in / Sign up

Export Citation Format

Share Document