Operads in a symmetric monoidal category

Author(s):  
Martin Markl ◽  
Steve Shnider ◽  
Jim Stasheff
2013 ◽  
Vol 2013 ◽  
pp. 1-25
Author(s):  
Carmen Caprau

We introduce the category of singular 2-dimensional cobordisms and show that it admits a completely algebraic description as the free symmetric monoidal category on atwin Frobenius algebra, by providing a description of this category in terms of generators and relations. A twin Frobenius algebra(C,W,z,z∗)consists of a commutative Frobenius algebraC, a symmetric Frobenius algebraW, and an algebra homomorphismz:C→Wwith dualz∗:W→C, satisfying some extra conditions. We also introduce a generalized 2-dimensional Topological Quantum Field Theory defined on singular 2-dimensional cobordisms and show that it is equivalent to a twin Frobenius algebra in a symmetric monoidal category.


2008 ◽  
Vol 18 (3) ◽  
pp. 613-643 ◽  
Author(s):  
ERNIE MANES ◽  
PHILIP MULRY

In this paper we introduce the concept of Kleisli strength for monads in an arbitrary symmetric monoidal category. This generalises the notion of commutative monad and gives us new examples, even in the cartesian-closed category of sets. We exploit the presence of Kleisli strength to derive methods for generating distributive laws. We also introduce linear equations to extend the results to certain quotient monads. Mechanisms are described for finding strengths that produce a large collection of new distributive laws, and consequently monad compositions, including the composition of monadic data types such as lists, trees, exceptions and state.


2020 ◽  
Vol 32 (1) ◽  
pp. 45-62 ◽  
Author(s):  
Ramon Antoine ◽  
Francesc Perera ◽  
Hannes Thiel

AbstractWe previously showed that abstract Cuntz semigroups form a closed symmetric monoidal category. This automatically provides additional structure in the category, such as a composition and an external tensor product, for which we give concrete constructions in order to be used in applications. We further analyze the structure of not necessarily commutative {\mathrm{Cu}}-semirings, and we obtain, under mild conditions, a new characterization of solid {\mathrm{Cu}}-semirings R by the condition that {R\cong\llbracket R,R\rrbracket}.


Author(s):  
Isamu Iwanari

AbstractIn this paper we begin studying tannakian constructions in ∞-categories and combine them with the theory of motivic categories developed by Hanamura, Levine, and Voevodsky. This paper is the first in a series of papers. For the purposes above, we first construct a derived affine group scheme and its representation category from a symmetric monoidal ∞-category, which we shall call the tannakization of a symmetric monoidal ∞-category. It can be viewed as an ∞-categorical generalization of work of Joyal-Street and Nori. Next we apply it to the stable ∞-category of mixed motives equipped with the realization functor of a mixed Weil cohomology. We construct a derived motivic Galois group which represents the automorphism group of the realization functor, and whose representation category satisfies an appropriate universal property. As a consequence, we construct an underived motivic Galois group of mixed motives, which is a pro-algebraic group and has nice properties. Also, we present basic properties of derived affine group schemes in the Appendix.


2021 ◽  
Vol 28 (02) ◽  
pp. 213-242
Author(s):  
Tao Zhang ◽  
Yue Gu ◽  
Shuanhong Wang

We introduce the notions of a four-angle Hopf quasimodule and an adjoint quasiaction over a Hopf quasigroup [Formula: see text] in a symmetric monoidal category [Formula: see text]. If [Formula: see text] possesses an adjoint quasiaction, we show that symmetric Yetter-Drinfeld categories are trivial, and hence we obtain a braided monoidal category equivalence between the category of right Yetter-Drinfeld modules over [Formula: see text] and the category of four-angle Hopf modules over [Formula: see text] under some suitable conditions.


2018 ◽  
Vol 2020 (17) ◽  
pp. 5342-5386
Author(s):  
Ramon Antoine ◽  
Francesc Perera ◽  
Hannes Thiel

Abstract We show that abstract Cuntz semigroups form a closed symmetric monoidal category. Thus, given Cuntz semigroups $S$ and $T$, there is another Cuntz semigroup $[\![ S,T ]\!] $ playing the role of morphisms from $S$ to $T$. Applied to $C^{\ast }$-algebras $A$ and $B$, the semigroup $[\![ \operatorname{Cu}(A),\operatorname{Cu}(B) ]\!] $ should be considered as the target in analogs of the universal coefficient theorem for bivariant theories of Cuntz semigroups. Abstract bivariant Cuntz semigroups are computable in a number of interesting cases. We also show that order-zero maps between $C^{\ast }$-algebras naturally define elements in the respective bivariant Cuntz semigroup.


1999 ◽  
Vol 64 (1) ◽  
pp. 227-242 ◽  
Author(s):  
Kosta Došen ◽  
Zoran Petrić

AbstractIt is proved that all the isomorphisms in the cartesian category freely generated by a set of objects (i.e., a graph without arrows) can be written in terms of arrows from the symmetric monoidal category freely generated by the same set of objects. This proof yields an algorithm for deciding whether an arrow in this free cartesian category is an isomorphism.


Author(s):  
Claudio Bartocci ◽  
Andrea Gentili ◽  
Jean-Jacques Szczeciniarz

AbstractOver the past two decades several different approaches to defining a geometry over $${{\mathbb F}_1}$$ F 1 have been proposed. In this paper, relying on Toën and Vaquié’s formalism (J.K-Theory 3: 437–500, 2009), we investigate a new category $${\mathsf {Sch}}_{\widetilde{{\mathsf B}}}$$ Sch B ~ of schemes admitting a Zariski cover by affine schemes relative to the category of blueprints introduced by Lorscheid (Adv. Math. 229: 1804–1846, 2012). A blueprint, which may be thought of as a pair consisting of a monoid M and a relation on the semiring $$M\otimes _{{{\mathbb F}_1}} {\mathbb N}$$ M ⊗ F 1 N , is a monoid object in a certain symmetric monoidal category $${\mathsf B}$$ B , which is shown to be complete, cocomplete, and closed. We prove that every $${\widetilde{{\mathsf B}}}$$ B ~ -scheme $$\Sigma $$ Σ can be associated, through adjunctions, with both a classical scheme $$\Sigma _{\mathbb Z}$$ Σ Z and a scheme $$\underline{\Sigma }$$ Σ ̲ over $${{\mathbb F}_1}$$ F 1 in the sense of Deitmar (in van der Geer G., Moonen B., Schoof R. (eds.) Progress in mathematics 239, Birkhäuser, Boston, 87–100, 2005), together with a natural transformation $$\Lambda :\Sigma _{\mathbb Z}\rightarrow \underline{\Sigma }\otimes _{{{\mathbb F}_1}}{\mathbb Z}$$ Λ : Σ Z → Σ ̲ ⊗ F 1 Z . Furthermore, as an application, we show that the category of “$${{\mathbb F}_1}$$ F 1 -schemes” defined by Connes and Consani in (Compos. Math. 146: 1383–1415, 2010) can be naturally merged with that of $${\widetilde{{\mathsf B}}}$$ B ~ -schemes to obtain a larger category, whose objects we call “$${{\mathbb F}_1}$$ F 1 -schemes with relations”.


Sign in / Sign up

Export Citation Format

Share Document