algebra homomorphism
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Đặng Võ Phúc

Fix $\mathbb Z/2$ is the prime field of two elements and write $\mathcal A_2$ for the mod $2$ Steenrod algebra. Denote by $GL_d:= GL(d, \mathbb Z/2)$ the general linear group of rank $d$ over $\mathbb Z/2$ and by $\mathscr P_d$ the polynomial algebra $\mathbb Z/2[x_1, x_2, \ldots, x_d],$ which is viewed as a connected unstable $\mathcal A_2$-module on $d$ generators of degree one. We study the Peterson "hit problem" of finding the minimal set of $\mathcal A_2$-generators for $\mathscr P_d.$ It is equivalent to determining a $\mathbb Z/2$-basis for the space of "cohits"$$Q\mathscr P_d := \mathbb Z/2\otimes_{\mathcal A_2} \mathscr P_d \cong \mathscr P_d/\mathcal A_2^+\mathscr P_d.$$ This $Q\mathscr P_d$ is considered as a form modular representation of $GL_d$ over $\mathbb Z/2.$ The problem for $d= 5$ is not yet completely solved, and unknown in general. In this work, we give an explicit solution to the hit problem of five variables in the generic degree $n = r(2^t -1) + 2^ts$ with $r = d = 5,\ s =8$ and $t$ an arbitrary non-negative integer. An application of this study to the cases $t = 0$ and $t = 1$ shows that the Singer algebraic transfer is an isomorphism in the bidegrees $(5, 5+(13.2^{0} - 5))$ and $(5, 5+(13.2^{1} - 5)).$ Moreover, the result when $t\geq 2$ was also discussed. Here, the Singer transfer of rank $d$ is a $\mathbb Z/2$-algebra homomorphism from $GL_d$-coinvariants of certain subspaces of $Q\mathscr P_d$ to the cohomology groups of the Steenrod algebra, ${\rm Ext}_{\mathcal A_2}^{d, d+*}(\mathbb Z/2, \mathbb Z/2).$ It is one of the useful tools for studying mysterious Ext groups and the Kervaire invariant one problem.


2021 ◽  
Author(s):  
Đặng Võ Phúc

Fix $\mathbb Z/2$ is the prime field of two elements and write $\mathcal A_2$ for the mod $2$ Steenrod algebra. Denote by $GL_d:= GL(d, \mathbb Z/2)$ the general linear group of rank $d$ over $\mathbb Z/2$ and by $\mathscr P_d$ the polynomial algebra $\mathbb Z/2[x_1, x_2, \ldots, x_d]$ as a connected unstable left $\mathcal A_2$-module on $d$ generators of degree one. We study the Peterson "hit problem" of finding the minimal set of $\mathcal A_2$-generators for $\mathscr P_d.$ Equivalently, we need to determine a basis for the $\mathbb Z/2$-vector space $$Q\mathscr P_d := \mathbb Z/2\otimes_{\mathcal A_2} \mathscr P_d \cong \mathscr P_d/\mathcal A_2^+\mathscr P_d$$ in each degree $n\geq 1.$ Note that this space is a representation of $GL_d$ over $\mathbb Z/2.$ The problem for $d= 5$ is not yet completely solved, and unknow in general.In this work, we give an explicit solution to the hit problem of five variables in the generic degree $n = r(2^t -1) + 2^ts$ with $r = d = 5,\ s =8$ and $t$ an arbitrary non-negative integer. An application of this study to the cases $t = 0$ and $t = 1$ shows that the Singer algebraic transfer of rank $5$ is an isomorphism in the bidegrees $(5, 5+(13.2^{0}-5))$ and $(5, 5+(13.2^{1}-5)).$ Moreover, the result when $t\geq 2$ was also discussed. Here, the Singer transfer of rank $d$ is a $\mathbb Z/2$-algebra homomorphism from $GL_d$-coinvariants of certain subspaces of $Q\mathscr P_d$ to the cohomology groups of the Steenrod algebra, ${\rm Ext}_{\mathcal A_2}^{d, d+*}(\mathbb Z/2, \mathbb Z/2).$ It is one of the useful tools for studying these mysterious Ext groups.


Author(s):  
Loring W. Tu

This chapter evaluates the Weil algebra and the Weil model. The Weil algebra of a Lie algebra g is a g-differential graded algebra that in a definite sense models the total space EG of a universal bundle when g is the Lie algebra of a Lie group G. The Weil algebra of the Lie algebra g and the map f is called the Weil map. The Weil map f is a graded-algebra homomorphism. The chapter then shows that the Weil algebra W(g) is a g-differential graded algebra. The chapter then looks at the cohomology of the Weil algebra; studies algebraic models for the universal bundle and the homotopy quotient; and considers the functoriality of the Weil model.


2019 ◽  
Vol 150 (3) ◽  
pp. 1581-1607
Author(s):  
Yaping Yang ◽  
Gufang Zhao

AbstractWe compare two cohomological Hall algebras (CoHA). The first one is the preprojective CoHA introduced in [19] associated with each quiver Q, and each algebraic oriented cohomology theory A. It is defined as the A-homology of the moduli of representations of the preprojective algebra of Q, generalizing the K-theoretic Hall algebra of commuting varieties of Schiffmann-Vasserot [15]. The other one is the critical CoHA defined by Kontsevich-Soibelman associated with each quiver with potentials. It is defined using the equivariant cohomology with compact support with coefficients in the sheaf of vanishing cycles. In the present paper, we show that the critical CoHA, for the quiver with potential of Ginzburg, is isomorphic to the preprojective CoHA as algebras. As applications, we obtain an algebra homomorphism from the positive part of the Yangian to the critical CoHA.


2019 ◽  
Vol 30 (01) ◽  
pp. 1950002
Author(s):  
Qiang Fu ◽  
Wenting Gao

Let [Formula: see text] be the Lusztig integral form of quantum [Formula: see text]. There is a natural surjective algebra homomorphism [Formula: see text] from [Formula: see text] to the integral [Formula: see text]-Schur algebra [Formula: see text]. We give a generating set for the kernel of [Formula: see text]. In particular, we obtain a presentation of the [Formula: see text]-Schur algebra by generators and relations over any field.


10.37236/7008 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Yuta Watanabe

In this paper, we introduce an algebra $\mathcal{H}$ from a subspace lattice with respect to a fixed flag which contains its incidence algebra as a proper subalgebra. We then establish a relation between the algebra $\mathcal{H}$ and the quantum affine algebra $U_{q^{1/2}}(\widehat{\mathfrak{sl}}_2)$, where $q$ denotes the cardinality of the base field. It is an extension of the well-known relation between the incidence algebra of a subspace lattice and the quantum algebra $U_{q^{1/2}}(\mathfrak{sl}_2)$. We show that there exists an algebra homomorphism from $U_{q^{1/2}}(\widehat{\mathfrak{sl}}_2)$ to $\mathcal{H}$ and that any irreducible module for $\mathcal{H}$ is irreducible as an $U_{q^{1/2}}(\widehat{\mathfrak{sl}}_2)$-module.


2017 ◽  
Vol 20 (02) ◽  
pp. 1750013 ◽  
Author(s):  
Qiang Fu

In 1990, Beilinson–Lusztig–MacPherson (BLM) discovered a realization for quantum [Formula: see text] via a geometric setting of quantum Schur algebras. We will generalize their result to the classical affine case. More precisely, we first use Ringel–Hall algebras to construct an integral form [Formula: see text] of [Formula: see text], where [Formula: see text] is the universal enveloping algebra of the loop algebra [Formula: see text]. We then establish the stabilization property of multiplication for the classical affine Schur algebras. This stabilization property leads to the BLM realization of [Formula: see text] and [Formula: see text]. In particular, we conclude that [Formula: see text] is a [Formula: see text]-Hopf subalgebra of [Formula: see text]. As a bonus, this method leads to an explicit [Formula: see text]-basis for [Formula: see text], and it yields explicit multiplication formulas between generators and basis elements for [Formula: see text]. As an application, we will prove that the natural algebra homomorphism from [Formula: see text] to the affine Schur algebra over [Formula: see text] is surjective.


2016 ◽  
Vol 16 (08) ◽  
pp. 1750154 ◽  
Author(s):  
Wenjuan Xie ◽  
Wende Liu

A Hom-structure on a Lie algebra [Formula: see text] is a linear map [Formula: see text] satisfying the Hom–Jacobi identity: [Formula: see text] for all [Formula: see text]. A Hom-structure is referred to as multiplicative if it is also a Lie algebra homomorphism. In this paper, using a classification theorem due to Mathieu, we determine explicitly all the Hom-structures on the simple graded Lie algebras of finite growth. As a direct consequence, all the Hom-structures on any simple graded Lie algebras of finite growth constitute a Jordan algebra in the usual way.


2016 ◽  
Vol 94 (2) ◽  
pp. 286-289 ◽  
Author(s):  
YEMON CHOI

Several papers have, as their raison d’être, the exploration of the generalised Lau product associated to a homomorphism $T:B\rightarrow A$ of Banach algebras. In this short note, we demonstrate that the generalised Lau product is isomorphic as a Banach algebra to the usual direct product $A\oplus B$. We also correct some misleading claims made about the relationship between this generalised Lau product and an older construction of Monfared [‘On certain products of Banach algebras with applications to harmonic analysis’, Studia Math. 178(3) (2007), 277–294].


2015 ◽  
Vol 92 (2) ◽  
pp. 282-289 ◽  
Author(s):  
F. ABTAHI ◽  
A. GHAFARPANAH

Let $T$ be a Banach algebra homomorphism from a Banach algebra ${\mathcal{B}}$ to a Banach algebra ${\mathcal{A}}$ with $\Vert T\Vert \leq 1$. Recently, Bhatt and Dabhi [‘Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism’, Bull. Aust. Math. Soc.87 (2013), 195–206] showed that cyclic amenability of ${\mathcal{A}}\times _{T}{\mathcal{B}}$ is stable with respect to $T$, for the case where ${\mathcal{A}}$ is commutative. In this note, we address a gap in the proof of this stability result and extend it to an arbitrary Banach algebra ${\mathcal{A}}$.


Sign in / Sign up

Export Citation Format

Share Document