On the asymptotic behavior of the spectral function of a selfadjoint differential equation of the second order and on expansion in eigenfunctions. II

Author(s):  
B. M. Levitan
Filomat ◽  
2015 ◽  
Vol 29 (9) ◽  
pp. 1995-2010 ◽  
Author(s):  
Jelena Milosevic ◽  
Jelena Manojlovic

This paper is concerned with asymptotic analysis of positive decreasing solutions of the secondorder quasilinear ordinary differential equation (E) (p(t)?(|x'(t)|))'=q(t)?(x(t)), with the regularly varying coefficients p, q, ?, ?. An application of the theory of regular variation gives the possibility of determining the precise information about asymptotic behavior at infinity of solutions of equation (E) such that lim t?? x(t)=0, lim t?? p(t)?(-x'(t))=?.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Omar Bazighifan ◽  
Hijaz Ahmad

In this paper, we establish the qualitative behavior of the even-order advanced differential equation a υ y κ − 1 υ β ′ + ∑ i = 1 j q i υ g y η i υ = 0 ,   υ ≥ υ 0 . The results obtained are based on the Riccati transformation and the theory of comparison with first- and second-order equations. This new theorem complements and improves a number of results reported in the literature. Two examples are presented to demonstrate the main results.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Ercan Tunç ◽  
Said R. Grace

This paper discusses oscillatory and asymptotic properties of solutions of a class of second-order nonlinear damped neutral differential equations. Some new sufficient conditions for any solution of the equation to be oscillatory or to converge to zero are given. The results obtained extend and improve some of the related results reported in the literature. The results are illustrated with examples.


Sign in / Sign up

Export Citation Format

Share Document