The endomorphism ring theorem

Author(s):  
Lars Kadison
Keyword(s):  
1982 ◽  
Vol 88 ◽  
pp. 17-53 ◽  
Author(s):  
G. van der Geer ◽  
K. Ueno

Around the beginning of this century G. Humbert ([9]) made a detailed study of the properties of compact complex surfaces which can be parametrized by singular abelian functions. A surface parametrized by singular abelian functions is the image under a holomorphic map of a singular abelian surface (i.e. an abelian surface whose endomorphism ring is larger than the ring of rational integers). Humbert showed that the periods of a singular abelian surface satisfy a quadratic relation with integral coefficients and he constructed an invariant D of such a relation with respect to the action of the integral symplectic group on the periods.


2020 ◽  
Vol 15 (1) ◽  
pp. 4-17
Author(s):  
Jean-François Biasse ◽  
Xavier Bonnetain ◽  
Benjamin Pring ◽  
André Schrottenloher ◽  
William Youmans

AbstractWe propose a heuristic algorithm to solve the underlying hard problem of the CSIDH cryptosystem (and other isogeny-based cryptosystems using elliptic curves with endomorphism ring isomorphic to an imaginary quadratic order 𝒪). Let Δ = Disc(𝒪) (in CSIDH, Δ = −4p for p the security parameter). Let 0 < α < 1/2, our algorithm requires:A classical circuit of size $2^{\tilde{O}\left(\log(|\Delta|)^{1-\alpha}\right)}.$A quantum circuit of size $2^{\tilde{O}\left(\log(|\Delta|)^{\alpha}\right)}.$Polynomial classical and quantum memory.Essentially, we propose to reduce the size of the quantum circuit below the state-of-the-art complexity $2^{\tilde{O}\left(\log(|\Delta|)^{1/2}\right)}$ at the cost of increasing the classical circuit-size required. The required classical circuit remains subexponential, which is a superpolynomial improvement over the classical state-of-the-art exponential solutions to these problems. Our method requires polynomial memory, both classical and quantum.


2018 ◽  
Vol 154 (4) ◽  
pp. 850-882
Author(s):  
Yunqing Tang

In his 1982 paper, Ogus defined a class of cycles in the de Rham cohomology of smooth proper varieties over number fields. This notion is a crystalline analogue of$\ell$-adic Tate cycles. In the case of abelian varieties, this class includes all the Hodge cycles by the work of Deligne, Ogus, and Blasius. Ogus predicted that such cycles coincide with Hodge cycles for abelian varieties. In this paper, we confirm Ogus’ prediction for some families of abelian varieties. These families include geometrically simple abelian varieties of prime dimension that have non-trivial endomorphism ring. The proof uses a crystalline analogue of Faltings’ isogeny theorem due to Bost and the known cases of the Mumford–Tate conjecture.


1965 ◽  
Vol 12 (2) ◽  
pp. 197-202 ◽  
Author(s):  
Patricia A. Tucker

2018 ◽  
Vol 2020 (24) ◽  
pp. 10005-10041 ◽  
Author(s):  
Yuri Bilu ◽  
Philipp Habegger ◽  
Lars Kühne

Abstract A result of the 2nd-named author states that there are only finitely many complex multiplication (CM)-elliptic curves over $\mathbb{C}$ whose $j$-invariant is an algebraic unit. His proof depends on Duke’s equidistribution theorem and is hence noneffective. In this article, we give a completely effective proof of this result. To be precise, we show that every singular modulus that is an algebraic unit is associated with a CM-elliptic curve whose endomorphism ring has discriminant less than $10^{15}$. Through further refinements and computer-assisted arguments, we eventually rule out all remaining cases, showing that no singular modulus is an algebraic unit. This allows us to exhibit classes of subvarieties in ${\mathbb{C}}^n$ not containing any special points.


Sign in / Sign up

Export Citation Format

Share Document