scholarly journals Integrin alpha 6 beta 4 forms a complex with the cytoskeletal protein HD1 and induces its redistribution in transfected COS-7 cells.

1997 ◽  
Vol 8 (4) ◽  
pp. 555-566 ◽  
Author(s):  
C M Niessen ◽  
E H Hulsman ◽  
E S Rots ◽  
P Sánchez-Aparicio ◽  
A Sonnenberg

The integrin alpha 6 beta 4 is a major component of hemidesmosomes, in which it is linked to intermediate filaments. Its presence in these structures is dependent on the beta 4 cytoplasmic domain but it is not known whether beta 4 interacts directly with keratin filaments or by interaction with other proteins. In this study, we have investigated the interaction of GST-cyto beta 4A fusion proteins with cellular proteins and demonstrate that a fragment of beta 4A, consisting of the two pairs of fibronectin type III repeats, separated by the connecting segment, forms a specific complex containing a 500-kDa protein that comigrates with HD1, a hemidesmosomal plaque protein. A similar protein was also bound by a glutathione S-transferase fusion protein containing the cytoplasmic domain of a variant beta 4 subunit (beta 4B), in which a stretch of 53 amino acids is inserted in the connecting segment. Subsequent immunoblot analysis revealed that the 500-kDa protein is in fact HD1. In COS-7 cells, which do not express alpha 6 beta 4 or the hemidesmosomal components BP230 and BP180, HD1 is associated with the cytoskeleton, but after transfecting the cells with cDNAs for human alpha 6 and beta 4, it was, instead, colocalized with alpha 6 beta 4 at the basal side of the cells. The organization of the vimentin, keratin, actin, and tubulin cytoskeletal networks was not affected by the expression of alpha 6 beta 4 in COS-7 cells. The localization of HD1 at the basal side of the cells depends on the same region of beta 4 that forms a complex containing HD1 in vitro, since the expression of alpha 6 with a mutant beta 4 subunit that lacks the four fibronectin type III repeats and the connecting segment did not alter the distribution of HD1. The results indicate that for association of alpha 6 beta 4 with HD1, the cytoplasmic domain of beta 4 is essential. We suggest that this association may be crucial for hemidesmosome assembly.

2019 ◽  
Vol 18 ◽  
pp. 153303381986992 ◽  
Author(s):  
Yan-Peng Liu ◽  
Wei-Da Chen ◽  
Wen-Na Li ◽  
Min Zhang

The distribution and content of fibronectin is closely related to the occurrence and development of tumors. Fibronectin is widely involved in cell migration, adhesion, proliferation, hemostasis, and tissue repair. Fibronectin type III domain containing 1, as a primary component of the structural domain of fibronectin, is closely related to the occurrence of some cancers. However, the molecular mechanism of fibronectin type III domain containing 1 in gastric cancer has not been elaborated. In this study, we analyzed the expression and prognosis of fibronectin type III domain containing 1 by collecting data from Oncomine and GEPIA database. The expression of fibronectin type III domain containing 1 in gastric cancer cells was detected by quantitative real-time polymerase chain reaction in vitro. After knockdown of fibronectin type III domain containing 1 by small interfering RNA, the proliferation, invasion, and migration of AGS (human gastric adenocarcinoma cell line) cells and the function of epithelial–mesenchymal transition were measured by Cell Counting Kit-8, colony formation, transwell, and Western blot. The results showed that fibronectin type III domain containing 1 was highly expressed in gastric cancer tissues and its overexpression was significantly correlated with the prognosis of gastric cancer. In vitro, experiments revealed that knockdown of fibronectin type III domain containing 1 could inhibit the proliferation, migration, and invasion of gastric cancer cells, possibly by changing the epithelial–mesenchymal transition pathway. The findings elaborated the biological role of fibronectin type III domain containing 1 in gastric cancer and potential mechanism of action, possibly providing a new insight for future clinical diagnosis or even molecular therapy.


Biomaterials ◽  
2013 ◽  
Vol 34 (16) ◽  
pp. 4191-4201 ◽  
Author(s):  
Hayato Matsui ◽  
Fuminori Sakurai ◽  
Kazufumi Katayama ◽  
Yasuhiro Abe ◽  
Mitsuhiro Machitani ◽  
...  

Structure ◽  
2004 ◽  
Vol 12 (1) ◽  
pp. 21-30 ◽  
Author(s):  
David Craig ◽  
Mu Gao ◽  
Klaus Schulten ◽  
Viola Vogel

2011 ◽  
Vol 100 (3) ◽  
pp. 604a
Author(s):  
Andras Czajlik ◽  
Gary Thompson ◽  
Ghulam N. Khan ◽  
Arnout Kalverde ◽  
Steve W. Homans ◽  
...  

Development ◽  
1994 ◽  
Vol 120 (3) ◽  
pp. 637-647
Author(s):  
R.P. Tucker ◽  
J. Spring ◽  
S. Baumgartner ◽  
D. Martin ◽  
C. Hagios ◽  
...  

Previous studies have shown that several forms of the glycoprotein tenascin are present in the embryonic extracellular matrix. These forms are the result of alternative splicing, which generates tenascin variants with different numbers of fibronectin type III repeats. We have used degenerate primers and PCR to isolate a novel tenascin exon from an avian genomic library. Genomic clones contained a sequence encoding a fibronectin type III repeat that corresponds to repeat ‘C’ from the variable domain of human tenascin. To demonstrate that tenascin containing repeat ‘C’ is actually synthesized by avian cells, a monospecific antiserum was raised against a repeat ‘C’ fusion protein. This antiserum recognized a novel high-molecular-weight variant on immunoblots of tenascin isolated from chicken embryo fibroblast-conditioned medium, and stained tendons on frozen sections of chicken embryos. A cDNA probe specific for mRNA encoding repeat ‘C’ was used for in situ hybridization. This probe hybridized in a subset of the embryonic tissues labelled with a universal tenascin probe, including tendons, ligaments and mesenchyme at sites of epithelial-mesenchymal interactions. Finally, we provide evidence that additional fibronectin type III repeats, one corresponding to a recently discovered human repeat as well as one entirely novel sequence, also exists in chicken tenascin mRNA. These data indicate that tenascin is present in the embryonic matrix in a multitude of forms and that these forms have distinctive distributions that may reflect more than one function for tenascin in development.


2018 ◽  
Vol 50 (4) ◽  
pp. 1574-1584 ◽  
Author(s):  
Xiu-ying Yang ◽  
Margaret C.L. Tse ◽  
Xiang Hu ◽  
Wei-hua Jia ◽  
Guan-hua Du ◽  
...  

Background/Aims: Fibronectin type III domain-containing protein 5 (FNDC5), also known as irisin, is a myokine secreted from muscle in response to exercise. However, the molecular mechanisms that regulate FNDC5 expression and the functional significance of irisn in skeletal muscle remain unknown. In this study, we explored the potential pathways that induce FNDC5 expression and delineated the metabolic effects of irisin on skeletal muscle. Methods: C2C12 myotubes were treated with drugs at various concentrations and durations. The expression and activation of genes were measured by real-time polymerase chain reaction (qRT-PCR) and Western blotting. Oxidative phosphorylation was quantified by measuring the oxygen consumption rate (OCR). Results: We found that the exercise-mimicking treatment (cAMP, forskolin and isoproterenol) increased Fndc5 expression in C2C12 myotubes. CREB over-expressed C2C12 myotubes displayed higher Fndc5 expression. CREB over-expression also promoted peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) expression. PGC-1α-induced Fndc5 expression was blocked when the dominant negative form of CREB (S133A) was present. PGC-1α mutation (S570A) also decreased Fndc5 expression. Immunoprecipitation showed that overexpressed PGC-1α complexed with CREB in HEK293 cells. C2C12 myotubes treated with forskolin also increased endogenous CREB and PGC-1α binding. Functionally, irisin treatment increased mitochondrial respiration, enhanced ATP production, promoted fatty acid oxidation but decreased glycolysis in myotubes. Conclusion: Our observation indicates that cAMP-mediated PGC-1α/CREB interaction triggers Fndc5 expression, which acts as an autocrine/paracrine to shape the metabolic phenotype of myotubes.


Sign in / Sign up

Export Citation Format

Share Document