scholarly journals Conservation of inner nuclear membrane targeting sequences in mammalian Pom121 and yeast Heh2 membrane proteins

2015 ◽  
Vol 26 (18) ◽  
pp. 3301-3312 ◽  
Author(s):  
Annemarie Kralt ◽  
Noorjahan B. Jagalur ◽  
Vincent van den Boom ◽  
Ravi K. Lokareddy ◽  
Anton Steen ◽  
...  

Endoplasmic reticulum–synthesized membrane proteins traffic through the nuclear pore complex (NPC) en route to the inner nuclear membrane (INM). Although many membrane proteins pass the NPC by simple diffusion, two yeast proteins, ScSrc1/ScHeh1 and ScHeh2, are actively imported. In these proteins, a nuclear localization signal (NLS) and an intrinsically disordered linker encode the sorting signal for recruiting the transport factors for FG-Nup and RanGTP-dependent transport through the NPC. Here we address whether a similar import mechanism applies in metazoans. We show that the (putative) NLSs of metazoan HsSun2, MmLem2, HsLBR, and HsLap2β are not sufficient to drive nuclear accumulation of a membrane protein in yeast, but the NLS from RnPom121 is. This NLS of Pom121 adapts a similar fold as the NLS of Heh2 when transport factor bound and rescues the subcellular localization and synthetic sickness of Heh2ΔNLS mutants. Consistent with the conservation of these NLSs, the NLS and linker of Heh2 support INM localization in HEK293T cells. The conserved features of the NLSs of ScHeh1, ScHeh2, and RnPom121 and the effective sorting of Heh2-derived reporters in human cells suggest that active import is conserved but confined to a small subset of INM proteins.

2004 ◽  
Vol 167 (6) ◽  
pp. 1051-1062 ◽  
Author(s):  
Tomoyuki Ohba ◽  
Eric C. Schirmer ◽  
Takeharu Nishimoto ◽  
Larry Gerace

Resident integral proteins of the inner nuclear membrane (INM) are synthesized as membrane-integrated proteins on the peripheral endoplasmic reticulum (ER) and are transported to the INM throughout interphase using an unknown trafficking mechanism. To study this transport, we developed a live cell assay that measures the movement of transmembrane reporters from the ER to the INM by rapamycin-mediated trapping at the nuclear lamina. Reporter constructs with small (<30 kD) cytosolic and lumenal domains rapidly accumulated at the INM. However, increasing the size of either domain by 47 kD strongly inhibited movement. Reduced temperature and ATP depletion also inhibited movement, which is characteristic of membrane fusion mechanisms, but pharmacological inhibition of vesicular trafficking had no effect. Because reporter accumulation at the INM was inhibited by antibodies to the nuclear pore membrane protein gp210, our results support a model wherein transport of integral proteins to the INM involves lateral diffusion in the lipid bilayer around the nuclear pore membrane, coupled with active restructuring of the nuclear pore complex.


2012 ◽  
Vol 125 (18) ◽  
pp. 4214-4218 ◽  
Author(s):  
K. Busayavalasa ◽  
X. Chen ◽  
A.-K. O. Farrants ◽  
N. Wagner ◽  
N. Sabri

2011 ◽  
Vol 193 (1) ◽  
pp. 109-123 ◽  
Author(s):  
Nikolaj Zuleger ◽  
David A. Kelly ◽  
A. Christine Richardson ◽  
Alastair R. W. Kerr ◽  
Martin W. Goldberg ◽  
...  

The nuclear envelope contains >100 transmembrane proteins that continuously exchange with the endoplasmic reticulum and move within the nuclear membranes. To better understand the organization and dynamics of this system, we compared the trafficking of 15 integral nuclear envelope proteins using FRAP. A surprising 30-fold range of mobilities was observed. The dynamic behavior of several of these proteins was also analyzed after depletion of ATP and/or Ran, two functions implicated in endoplasmic reticulum–inner nuclear membrane translocation. This revealed that ATP- and Ran-dependent translocation mechanisms are distinct and not used by all inner nuclear membrane proteins. The Ran-dependent mechanism requires the phenylalanine-glycine (FG)-nucleoporin Nup35, which is consistent with use of the nuclear pore complex peripheral channels. Intriguingly, the addition of FGs to membrane proteins reduces FRAP recovery times, and this also depends on Nup35. Modeling of three proteins that were unaffected by either ATP or Ran depletion indicates that the wide range in mobilities could be explained by differences in binding affinities in the inner nuclear membrane.


Structure ◽  
2001 ◽  
Vol 9 (6) ◽  
pp. 503-511 ◽  
Author(s):  
Cédric Laguri ◽  
Bernard Gilquin ◽  
Nicolas Wolff ◽  
Régine Romi-Lebrun ◽  
Karine Courchay ◽  
...  

1999 ◽  
Vol 77 (4) ◽  
pp. 321-329 ◽  
Author(s):  
Khaldon Bodoor ◽  
Sarah Shaikh ◽  
Paul Enarson ◽  
Sharmin Chowdhury ◽  
Davide Salina ◽  
...  

Nuclear pore complexes (NPCs) are extremely elaborate structures that mediate the bidirectional movement of macromolecules between the nucleus and cytoplasm. The current view of NPC organization features a massive symmetrical framework that is embedded in the double membranes of the nuclear envelope. It embraces a central channel of as yet ill-defined structure but which may accommodate particles with diameters up to 26 nm provided that they bear specific import/export signals. Attached to both faces of the central framework are peripheral structures, short cytoplasmic filaments, and a nuclear basket assembly, which interact with molecules transiting the NPC. The mechanisms of assembly and the nature of NPC structural intermediates are still poorly understood. However, mutagenesis and expression studies have revealed discrete sequences within certain NPC proteins that are necessary and sufficient for their appropriate targeting. In addition, some details are emerging from observations on cells undergoing mitosis where the nuclear envelope is disassembled and its components, including NPC subunits, are dispersed throughout the mitotic cytoplasm. At the end of mitosis, all of these components are reutilized to form nuclear envelopes in the two daughter cells. To date, it has been possible to define a time course of postmitotic assembly for a group of NPC components (CAN/Nup214, Nup153, POM121, p62 and Tpr) relative to the integral inner nuclear membrane protein LAP2 and the NPC membrane glycoprotein gp210. Nup153, a dynamic component of the nuclear basket, associates with chromatin towards the end of anaphase coincident with, although independent of, the inner nuclear membrane protein, LAP2. Assembly of the remaining proteins follows that of the nuclear membranes and occurs in the sequence POM121, p62, CAN/Nup214 and gp210/Tpr. Since p62 remains as a complex with three other NPC proteins (p58, p54, p45) during mitosis, and CAN/Nup214 maintains a similar interaction with its partner, Nup84, the relative timing of assembly of these additional four proteins may also be inferred. These observations suggest that there is a sequential association of NPC proteins with chromosomes during nuclear envelope reformation and the recruitment of at least eight of these precedes that of gp210. These findings support a model in which it is POM121 rather than gp210 that defines initial membrane-associated NPC assembly intermediates and which may therefore represent an essential component of the central framework of the NPC. Key words: nuclear pore complex, nucleoporin, mitosis, nuclear transport


2020 ◽  
Vol 133 (24) ◽  
pp. jcs250688 ◽  
Author(s):  
Matías Capella ◽  
Lucía Martín Caballero ◽  
Boris Pfander ◽  
Sigurd Braun ◽  
Stefan Jentsch

ABSTRACTMisassembled nuclear pore complexes (NPCs) are removed by sealing off the surrounding nuclear envelope (NE), which is conducted by the endosomal sorting complexes required for transport (ESCRT) machinery. Recruitment of ESCRT proteins to the NE is mediated by the interaction between the ESCRT member Chm7 and the inner nuclear membrane protein Heh1, which belongs to the conserved LEM family. Increased ESCRT recruitment results in excessive membrane scission at damage sites but its regulation remains poorly understood. Here, we show that Hub1-mediated alternative splicing of HEH1 pre-mRNA, resulting in production of its shorter form Heh1-S, is critical for the integrity of the NE in Saccharomyces cerevisiae. ESCRT-III mutants lacking Hub1 or Heh1-S display severe growth defects and accumulate improperly assembled NPCs. This depends on the interaction of Chm7 with the conserved MSC domain, which is only present in the longer variant Heh1-L. Heh1 variants assemble into heterodimers, and we demonstrate that a unique splice segment in Heh1-S suppresses growth defects associated with the uncontrolled interaction between Heh1-L and Chm7. Together, our findings reveal that Hub1-mediated splicing generates Heh1-S to regulate ESCRT recruitment to the NE.This article has an associated First Person interview with the first author of the paper.


2008 ◽  
Vol 182 (5) ◽  
pp. 897-910 ◽  
Author(s):  
Stefanie E. Grund ◽  
Tamás Fischer ◽  
Ghislain G. Cabal ◽  
Oreto Antúnez ◽  
José E. Pérez-Ortín ◽  
...  

Inner nuclear membrane proteins containing a LEM (LAP2, emerin, and MAN1) domain participate in different processes, including chromatin organization, gene expression, and nuclear envelope biogenesis. In this study, we identify a robust genetic interaction between transcription export (TREX) factors and yeast Src1, an integral inner nuclear membrane protein that is homologous to vertebrate LEM2. DNA macroarray analysis revealed that the expression of the phosphate-regulated genes PHO11, PHO12, and PHO84 is up-regulated in src1Δ cells. Notably, these PHO genes are located in subtelomeric regions of chromatin and exhibit a perinuclear location in vivo. Src1 spans the nuclear membrane twice and exposes its N and C domains with putative DNA-binding motifs to the nucleoplasm. Genome-wide chromatin immunoprecipitation–on-chip analyses indicated that Src1 is highly enriched at telomeres and subtelomeric regions of the yeast chromosomes. Our data show that the inner nuclear membrane protein Src1 functions at the interface between subtelomeric gene expression and TREX-dependent messenger RNA export through the nuclear pore complexes.


1990 ◽  
Vol 111 (6) ◽  
pp. 2225-2234 ◽  
Author(s):  
L Powell ◽  
B Burke

The movement between nuclei of an integral protein of the inner nuclear membrane has been studied in rat/mouse and rat/hamster heterokaryons. This protein, p55, was found to equilibrate between nuclei over a period of approximately 6 h in the absence of new protein synthesis. When rat/mouse heterokaryons were constructed using an undifferentiated murine embryonal carcinoma (P19), which lacks lamins A and C, no accumulation of p55 in the mouse cell nucleus was observed. However, P19 nuclei could be rendered competent to accumulate p55 by transfecting the parent cells with human lamin A before cell fusion, supporting the notion that p55 may interact with the nuclear lamina. Since p55 does not appear to be able to dissociate from the nuclear membrane, it is concluded that this exchange between nuclei does not occur in the aqueous phase and instead is probably membrane mediated. It is proposed that this protein may be free to move between the inner and outer nuclear membranes via the continuities at the nuclear pore complexes and that transfer between nuclei occurs via lateral diffusion through the peripheral ER, which appears to form a single continuous membrane system in these heterokaryons. One implication of these observations is that accumulation of at least some integral proteins in the inner nuclear membrane may be mediated by interactions with other nuclear components and may not require a single defined targeting sequence.


Sign in / Sign up

Export Citation Format

Share Document