Brownian motion and thermal fluctuations

2013 ◽  
pp. 93-111
Author(s):  
Masao Doi
Author(s):  
Sauro Succi

Fluid flow at nanoscopic scales is characterized by the dominance of thermal fluctuations (Brownian motion) versus directed motion. Thus, at variance with Lattice Boltzmann models for macroscopic flows, where statistical fluctuations had to be eliminated as a major cause of inefficiency, at the nanoscale they have to be summoned back. This Chapter illustrates the “nemesis of the fluctuations” and describe the way they have been inserted back within the LB formalism. The result is one of the most active sectors of current Lattice Boltzmann research.


Author(s):  
Giovanni Zocchi

This chapter provides an introduction to the main ideas of Brownian motion. Brownian motion connects equilibrium and nonequilibrium statistical mechanics. It connects diffusion—a nonequilibrium phenomenon—with thermal fluctuations—an equilibrium concept. More precisely, diffusion with a net flow of particles, driven by a concentration gradient, pertains to a nonequilibrium system, since there is a net current. Without a concentration gradient, the system is macroscopically in equilibrium, but each individual particle undergoes self-diffusion just the same. In this sense, Brownian motion is at the border of equilibrium and nonequilibrium statistical mechanics.


2010 ◽  
Vol 61 (4) ◽  
pp. 252-256 ◽  
Author(s):  
Gabriela Vasziová ◽  
Jana Tóthová ◽  
Lukáš Glod ◽  
Vladimír Lisý

Thermal Fluctuations in Electric Circuits and the Brownian MotionIn this work we explore the mathematical correspondence between the Langevin equation that describes the motion of a Brownian particle (BP) and the equations for the time evolution of the charge in electric circuits, which are in contact with the thermal bath. The mean quadrate of the fluctuating electric charge in simple circuits and the mean square displacement of the optically trapped BP are governed by the same equations. We solve these equations using an efficient approach that allows us converting the stochastic equations to ordinary differential equations. From the obtained solutions the autocorrelation function of the current and the spectral density of the current fluctuations are found. As distinct from previous works, the inertial and memory effects are taken into account.


2008 ◽  
Vol 1096 ◽  
Author(s):  
Ersin Altintas ◽  
Edin Sarajlic ◽  
Karl F. Bohringer ◽  
Hiroyuki Fujita

AbstractNanosystems operating in liquid media may suffer from random thermal fluctuations. Some natural nanosystems, e.g. biomolecular motors, which survive in an environment where the energy required for bio-processes is comparable to thermal energy, exploit these random fluctuations to generate a controllable unidirectional movement. Inspired by the nature, a transportation system of nanobeads achieved by exploiting Brownian motion were proposed and realized. This decreases energy consumption and saves the energy compared to ordinal pure electric or magnetic drive. In this paper we present a linear Brownian motor with a 3-phase electrostatic rectification aimed for unidirectional transport of nanobeads in microfluidic channels. The transport of the beads is performed in 1 μm deep, 2 μm wide PDMS microchannels, which constrain three-dimensional random motion of nanobeads into 1D fluctuation, so-called tamed Brownian motion. We have experimentally traced the rectified motion of nanobeads and observed the shift in the beam distribution as a function of applied voltage. The detailed computational analysis on the importance of switching sequence on the speed performance of motor is performed and compared with the experimental results showing a good agreement.


2015 ◽  
Vol 785 ◽  
pp. 189-218 ◽  
Author(s):  
N. J. Hoh ◽  
R. N. Zia

Hydrodynamic diffusion in the absence of Brownian motion is studied via active microrheology in the ‘pure-hydrodynamic’ limit, with a view towards elucidating the transition from colloidal microrheology to the non-colloidal limit, falling-ball rheometry. The phenomenon of non-Brownian force-induced diffusion in falling-ball rheometry is strictly hydrodynamic in nature; in contrast, analogous force-induced diffusion in colloids is deeply connected to the presence of a diffusive boundary layer even when Brownian motion is very weak compared with the external force driving the ‘probe’ particle. To connect these two limits, we derive an expression for the force-induced diffusion in active microrheology of hydrodynamically interacting particles via the Smoluchowski equation, where thermal fluctuations play no role. While it is well known that the microstructure is spherically symmetric about the probe in this limit, fluctuations in the microstructure need not be – and indeed lead to a diffusive spread of the probe trajectory. The force-induced diffusion is anisotropic, with components along and transverse to the line of external force. The latter is identically zero owing to the fore–aft symmetry of pair trajectories in Stokes flow. In a naïve first approach, the vanishing relative hydrodynamic mobility at contact between the probe and an interacting bath particle was assumed to eliminate all physical contribution from interparticle forces, whereby advection alone drove structural evolution in pair density and microstructural fluctuations. With such an approach, longitudinal force-induced diffusion vanishes in the absence of Brownian motion, a result that contradicts well-known experimental measurements of such diffusion in falling-ball rheometry. To resolve this contradiction, the probe–bath-particle interaction at contact was carefully modelled via an excluded annulus. We find that interparticle forces play a crucial role in encounters between particles in the hydrodynamic limit – as they must, to balance the advective flux. Accounting for this force results in a longitudinal force-induced diffusion $D_{\Vert }=1.26aU_{S}{\it\phi}$, where $a$ is the probe size, $U_{S}$ is the Stokes velocity and ${\it\phi}$ is the volume fraction of bath particles, in excellent qualitative and quantitative agreement with experimental measurements in, and theoretical predictions for, macroscopic falling-ball rheometry. This new model thus provides a continuous connection between micro- and macroscale rheology, as well as providing important insight into the role of interparticle forces for diffusion and rheology even in the limit of pure hydrodynamics: interparticle forces give rise to non-Newtonian rheology in strongly forced suspensions. A connection is made between the flow-induced diffusivity and the intrinsic hydrodynamic microviscosity which recovers a precise balance between fluctuation and dissipation in far from equilibrium suspensions; that is, diffusion and drag arise from a common microstructural origin even far from equilibrium.


Geophysics ◽  
1942 ◽  
Vol 7 (2) ◽  
pp. 115-122 ◽  
Author(s):  
Alfred Wolf

The theory of Brownian motion is applied to the problem of determination of the limiting sensitivity of seismic detectors. It is shown that a certain minimum suspended mass is requird for the recording of small ground motions. Electromagnetic geophones are studied in detail, and it is shown how spontaneous thermal fluctuations in voltage limit the performance of these instruments. Under certain conditions, a geophone may be treated as a power generator, and the necessary suspended mass is then determined by the power requirements of the recording apparatus.


Fractals ◽  
1997 ◽  
Vol 05 (01) ◽  
pp. 87-93
Author(s):  
U. Zürcher

We investigate relaxation and thermal fluctuations in systems with continuous symmetry in arbitrary spatial dimensions. For the scalar order parameter ζ(r, t) with r∈ℛd, the deterministic relaxation is caused by hydrodynamic modes η∂ζ(r, t)/∂t= K∇2ζ(r, t). For a finite volume V, we expand the scalar field in a discrete Fourier series and then we study the behavior in the limit V→∞. We find that the second moment is well defined for dimensions d≥3, while it diverges for d=1, 2. Furthermore, we show that for d<4, the decay of the scalar field does not define an "effective" relaxation time. For dimensions d<4, these two properties suggest scale-invariant properties of the scalar field in the limit V→∞. We show that thermal fluctuations are described by fractional Brownian motion for d ≤ 3 and by ordinary Brownian motion for d ≥ 4. The spectral density of the stochastic force follows 1/f for d=1 and d=2, [Formula: see text] for d=3, and "white noise," f0 for d≥4. We find explicit representation of the equilibrium distribution of the conserved scalar field. For d≥4 it is a Gaussian distribution, while for d=1 and d=2, it is the Cauchy distribution.


2010 ◽  
Vol 61 (5) ◽  
pp. 282-286
Author(s):  
Lukáš Glod ◽  
Gabriela Vasziová ◽  
Jana Tóthová ◽  
Vladimír Lisý

Field-Driven Brownian Motion of Magnetic Domain WallsThe dynamics of a magnetic domain wall (DW) in a wire is studied. The DW is modeled as a Brownian particle subjected to thermal fluctuations and is characterized by the mass, position and velocity. Its motion is damped by friction, pinned by the irregularities in the material and driven by a constant force due to the external magnetic field. We have obtained the corresponding Langevin equation that contains a white-noise force. The use of an effective method taken from the statistical physics allowed us to convert this stochastic equation into an ordinary differential equation. From its solution the mean square displacement of the DW with other relevant time correlation functions and their spectral densities have been found. The electric current induced by the moving DW is also calculated.


Sign in / Sign up

Export Citation Format

Share Document