interparticle forces
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 18)

H-INDEX

40
(FIVE YEARS 3)

Author(s):  
Jeongki Lee ◽  
Dante Fratta ◽  
Idil Deniz Akin

We developed an experimental program to monitor how interparticle forces control fine-grained soils' mechanical behavior when saturation changes from the tightly adsorbed regime to saturation. The testing program uses stiffness (i.e., S-wave velocity) and strength (i.e., Brazilian tensile strength) tests on kaolinite, silica flour, and diatomaceous earth soil samples at very low confining stresses (< 5 kPa). Three fine-grained soils yield a range of different properties, including particle size, specific surface area, negative charge density, and internal/external particle porosity. Results show that shear stiffness and tensile strength follow similar trends, emphasizing that the same interparticle forces control the mechanical responses. In particular, the interpretation of S-wave velocity measurements shows three different behavior ranges: a van der Waals attraction range, a capillary-dominated interparticle forces range, and the continuous decrease in the capillary forces from the saturation at the air-entry pressure until full saturation. We show that the interparticle forces respond to a complex function of water content, particle size, particle separations, surface charge density, and the presence of internal particle porosity.


2021 ◽  
Vol 232 ◽  
pp. 116349
Author(s):  
Iman Soleimani ◽  
Navid Elahipanah ◽  
Jaber Shabanian ◽  
Jamal Chaouki

Geoderma ◽  
2021 ◽  
Vol 385 ◽  
pp. 114834
Author(s):  
Jingfang Liu ◽  
Feinan Hu ◽  
Chenyang Xu ◽  
Zilong Wang ◽  
Rentian Ma ◽  
...  

Author(s):  
Kjell Eriksson ◽  
Christer Stenström

Abstract In peridynamics, boundary effects generally appear due to nonlocality of interparticle forces; in particular, end effects are found in 1D bars. In a previous work by Eriksson and Stenström (J Peridyn Nonlocal Model 2(2):205–228, 2020), a simple method to remove end effects in certain types of 1D bars, or to homogenize such bars, was presented for bars with constant micromodulus. In this work, which is a continuation of Eriksson and Stenström (J Peridyn Nonlocal Model 2(2):205–228, 2020), the homogenizing procedure is applied to bars with a linear, or “triangular,” micromodulus. For the examples studied, common in practice, the linear elastic behavior of a homogenized bar, is identical to that of a corresponding classical continuum mechanics bar, independently of the interparticle force range and total number of material points of the bar.


2020 ◽  
Vol 117 (28) ◽  
pp. 16234-16242 ◽  
Author(s):  
Chongpu Zhai ◽  
Eric B. Herbold ◽  
Ryan C. Hurley

Ultrasound propagation through externally stressed, disordered granular materials was experimentally and numerically investigated. Experiments employed piezoelectric transducers to excite and detect longitudinal ultrasound waves of various frequencies traveling through randomly packed sapphire spheres subjected to uniaxial compression. The experiments featured in situ X-ray tomography and diffraction measurements of contact fabric, particle kinematics, average per-particle stress tensors, and interparticle forces. The experimentally measured packing configuration and inferred interparticle forces at different sample stresses were used to construct spring networks characterized by Hessian and damping matrices. The ultrasound responses of these network were simulated to investigate the origins of wave velocity, acoustic paths, dispersion, and attenuation. Results revealed that both packing structure and interparticle force heterogeneity played an important role in controlling wave velocity and dispersion, while packing structure alone quantitatively explained most of the observed wave attenuation. This research provides insight into time- and frequency-domain features of wave propagation in randomly packed granular materials, shedding light on the fundamental mechanisms controlling wave velocities, dispersion, and attenuation in such systems.


Sign in / Sign up

Export Citation Format

Share Document