Modern Perspectives in Lattice QCD: Quantum Field Theory and High Performance ComputingLecture Notes of the Les Houches Summer School: Volume 93, August 2009

Author(s):  
Laurent Lellouch ◽  
Rainer Sommer ◽  
Benjamin Svetitsky ◽  
Anastassios Vladikas ◽  
Leticia F. Cugliandolo
2020 ◽  
pp. 137-262
Author(s):  
Hartmut Wittig

AbstractSince Wilson’s seminal papers of the mid-1970s, the lattice approach to Quantum Chromodynamics has become increasingly important for the study of the strong interaction at low energies, and has now turned into a mature and established technique. In spite of the fact that the lattice formulation of Quantum Field Theory has been applied to virtually all fundamental interactions, it is appropriate to discuss this topic in a chapter devoted to QCD, since by far the largest part of activity is focused on the strong interaction. Lattice QCD is, in fact, the only known method which allows ab initio investigations of hadronic properties, starting from the QCD Lagrangian formulated in terms of quarks and gluons.


Author(s):  
P.A. Boyle ◽  
R.D. Kenway ◽  
C.M. Maynard

Quantum chromodynamics (QCD) is the quantum field theory of the strong nuclear interaction and it explains how quarks and gluons are bound together to make more familiar objects such as the proton and neutron, which form the nuclei of atoms. UKQCD is a collaboration of eight UK universities that have come together to obtain and pool sufficient resources, both computational and manpower, to perform lattice QCD calculations. This paper explains how UKQCD uses and develops this software, how performance critical kernels for diverse architectures such as quantum chromodynamics-on-a-chip, BlueGene and XT4 are developed and employed and how UKQCD collaborates both internally and externally, with, for instance, the US SciDAC lattice QCD community.


2014 ◽  
Vol 6 (2) ◽  
pp. 1079-1105
Author(s):  
Rahul Nigam

In this review we study the elementary structure of Conformal Field Theory in which is a recipe for further studies of critical behavior of various systems in statistical mechanics and quantum field theory. We briefly review CFT in dimensions which plays a prominent role for example in the well-known duality AdS/CFT in string theory where the CFT lives on the AdS boundary. We also describe the mapping of the theory from the cylinder to a complex plane which will help us gain an insight into the process of radial quantization and radial ordering. Finally we will develop the representation of the Virasoro algebra which is the well-known "Verma module".  


2002 ◽  
Author(s):  
Marco Aurelio Do Rego Monteiro ◽  
V. B. Bezerra ◽  
E. M.F. Curado

Author(s):  
Michael Kachelriess

After a brief review of the operator approach to quantum mechanics, Feynmans path integral, which expresses a transition amplitude as a sum over all paths, is derived. Adding a linear coupling to an external source J and a damping term to the Lagrangian, the ground-state persistence amplitude is obtained. This quantity serves as the generating functional Z[J] for n-point Green functions which are the main target when studying quantum field theory. Then the harmonic oscillator as an example for a one-dimensional quantum field theory is discussed and the reason why a relativistic quantum theory should be based on quantum fields is explained.


Author(s):  
Sauro Succi

Chapter 32 expounded the basic theory of quantum LB for the case of relativistic and non-relativistic wavefunctions, namely single-particle quantum mechanics. This chapter goes on to cover extensions of the quantum LB formalism to the overly challenging arena of quantum many-body problems and quantum field theory, along with an appraisal of prospective quantum computing implementations. Solving the single particle Schrodinger, or Dirac, equation in three dimensions is a computationally demanding task. This task, however, pales in front of the ordeal of solving the Schrodinger equation for the quantum many-body problem, namely a collection of many quantum particles, typically nuclei and electrons in a given atom or molecule.


Sign in / Sign up

Export Citation Format

Share Document